期刊文献+

基于BP神经网络的北京市出租车油耗模型研究 被引量:5

Study on Taxi Fuel Consumption Model in Beijing Based on BP Neural Network
下载PDF
导出
摘要 从宏观的角度出发,在传统油耗算法研究的基础上,从影响油耗的道路和交通特性方面,确定了3个输入参数,分别是链路平均速度、交叉口密度和停驶比,并利用大量出租车油耗数据分析了北京市主干路上这3个影响因素与油耗之间的关系,提出了基于BP神经网络的油耗模型,结果表明神经网络具有更高的精度和稳定性,针对北京市路网,选择具有代表性的长安街和西大望路进行了实例应用.研究表明:对城市道路进行信号联动控制或对车辆进行路径诱导、减少停驶比、提高路段平均速度是降低能耗的一个有效方法. Based on the research of traditional fuel consumption model,this paper identified three main factors in terms of road and traffic conditions,namely the average speed of the link,the intersection density,and stop ratio. And it analyzed the relationship between the three influence factors and fuel consumption on the main road in Beijing on the base of a large number of the taxi fuel consumption data.Then a fuel consumption model is proposed based on the BP neural network. The results show that the neural network model has a higher accuracy and stability. In view of the Beijing city road network,it applied the representative example of Chang'an Avenue and West Da Wang Road. Research results show that it is an effective method to reduce the energy consumption by using coordinated signal control or dynamic route guidance.
出处 《道路交通与安全》 2015年第5期43-49,共7页 Road Traffic & Safety
基金 北京市基金重点项目(Z1004011201301)
关键词 BP神经网络 油耗模型 油耗影响因素 BP neural network fuel consumption model fuel consumption influence factors
  • 相关文献

参考文献11

  • 1Wipke K B , CaddyandS M R, Burch D. ADVISOR 2. 1 :A user-friendly advanced powertrain simulation using acombined backward/forward approach [ J ]. IEEETransactions on Vehicular Technology : Special Issue onHybrid and Electric Vehicles, 1999, 48(6) : 1751-1761.
  • 2Barth M , An F, Younglove T, et al. Comprehensive modalemissions model ( CMEM ) , version 2. 02 , User,s guide[R]. Univ. of California, Riverside, California,2001.
  • 3Silva C M, Farias T L, J. M. C. Mendes-Lopes.EcoGest-Numerical Modelling of the Dynamic, FuelConsumption and Tailpipe Emissions of Vehicles Equippedwith Spark Ignition Engines [R]. Urban Transport VIII:Urban Transport in the 21st Century, 2002 : 523-532.
  • 4Alessandra Cappiello, Ismail Chabini, Edward K. Nam,etc. A Statistical Model of Vehicle Emissions and FuelConsumption [ R]. TRe IEEE 5 th International Conferenceon Intelligent Transportation Systems, 2002.
  • 5Jost P, Hassel D, Webber F J, Sonnbom. Emission andfuel consumption modeling based on continuousmeasurements[ R ]. TUV Rhineland, Cologue, 1992.
  • 6Joumard R, Jost P, Hickman J. Influence of instantaneousspeed and acceleration on hot passenger car emissions andfuel consumption [ J ]. Society of Automotive Engineers,Pennsylvania, 1995.
  • 7Edward K. Nam. Proof of concept investigation for thephysical emission rate estimator ( PERE) to be Used inMOVES[R]. USA, 2003.
  • 8毛健,赵红东,姚婧婧.人工神经网络的发展及应用[J].电子设计工程,2011,19(24):62-65. 被引量:178
  • 9凌建群.载重车油耗计算方法及分析[J].柴油机设计与制造,2006,14(1):24-27. 被引量:14
  • 10孔祥玉,胡昌华,韩崇昭.系统特征信息提取神经网络与算法[M].北京:科学出版社,2011.

二级参考文献22

  • 1武妍,王守觉.一种通过反馈提高神经网络学习性能的新算法[J].计算机研究与发展,2004,41(9):1488-1492. 被引量:15
  • 2李松,贺国光,张杰.车头间距与高速公路交通流混沌[J].西南交通大学学报,2007,42(3):305-309. 被引量:5
  • 3韩立群.人工神经网络[M].北京:北京邮电出版社,2006.
  • 4Jenkins B K,Tanguay A R. Handbook of Neural Computing and Neural Networks[M]. Boston: MIT Press,1995.
  • 5Bnlsabi A. Some analytical solutions to the general approximation problem for feed forward neural networks[J]. Neural Networks 1993(6): 991-996.
  • 6Setiono R,Leow W K.FERNN: An algorithm for fast extraction of rules from neural networks[J]. Applied Intelligence,2000, 12(1-2): 15-25.
  • 7XIA Min,FANG Jian-an,TANG Yang,et al. Dynamic depression control of chaotic neural networks for associative memory[J]. Neurocomputing, 2010(73),776-783.
  • 8OZ C,LEU M C. American sign language word recognition with a sensory glove using artificial neural networks[J].Engineering Applications of Artificial Intelligence,2011(4):1204-1213.
  • 9Singhal D, Swarup K S. Electricity price forecasting using artificial neural networks[J]. Electrical Power and Energy Systems,2011(3):550-555.
  • 10WU Wei,WANG Jian,CHENG Ming-song,et al. Convergence analysis of online gradient method for BP neural networks[J]. Neural Networks , 2011(24):91-98.

共引文献361

同被引文献46

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部