期刊文献+

基于改进BP神经网络光伏发电量预测研究

Research on Improve the Prediction of BP Neural Net Photovoltaic Power Generation
下载PDF
导出
摘要 分析了影响光伏电池输出的主要因素,建立基于改进BP神经网络的光伏发电量预测模型。由光伏输出影响因素的分析,利用光照强度及环境温度对改进BP神经网络进行训练,对比了传统数学模型、传统BP模型与改进的BP模型的预测结果,结果表明该模型有较准确的预测能力。 The main influence factors of the photovoltaic cell output has been analyzed and the prediction model on improved the photovoltaic power generation of BP neural net was established. Based on the analysis of influence factors,using the light intensity and environment temperature to train improving BP neural network,and the predictive results of the traditional mathematical model,the traditional BP model and the improved BP model were compared. The results show that the model has relatively accurate prediction ability.
作者 戴锦
出处 《南昌航空大学学报(自然科学版)》 CAS 2015年第3期91-97,共7页 Journal of Nanchang Hangkong University(Natural Sciences)
基金 集成光电子学国家重点联合实验室开放课题(IOSKL2012KF14)
关键词 改进BP神经网络 传统数学模型 预测能力 improved BP neural net traditional mathematical model prediction ability
  • 相关文献

参考文献15

二级参考文献67

共引文献559

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部