Solving Linear Fredholm-Stieltjes Integral Equations of the Second Kind by Using the Generalized Midpoint Rule
Solving Linear Fredholm-Stieltjes Integral Equations of the Second Kind by Using the Generalized Midpoint Rule
摘要
In this paper, the approximate solution to the linear fredholm-stieltjes integral equations of the second kind (LFSIESK) by using the generalized midpoint rule (GMR) is introduced. A comparison resu|ts depending on the number of subintervals "n" are calculated by using Maple 18 and presented. These results are demonstrated graphically in a particular numerical example. An algorithm of this application is given by using Maple 18.
参考文献8
-
1Wolfgang H. (1995), Integral Equations; theory and numerical treatment, Birkhauser, Basel, Germany.
-
2Delves L.M., Walsh J., (1974) Numerical Solution of Integral Equations, Clarendon, Oxford, England.
-
3Atkinson K., Han W., (2009) Theoretical and Numerical Analysis, Springer, New York, USA.
-
4Majeed S.M., (2014) Modified Midpoint Method for Solving System of Linear Fredholm Integral Equations of the Second Kind, American Journal of Applied Mathematics, Volume 2. No 5, 155-161.
-
5Asanov A., Muslu I., Yanik S., (2014) Approximation Solution of Linear Fredholm-Stieltjes Integral Equations of Second Kind Using Generalized Trapezoid Quadrature Approximation Methods, , 195-200.
-
6Asanov A. , Chelik M.H., Abdujabbarov M. (2011) Approximating the Stieltjes Integral Using the Generalized Midpoint Rule, Matematika, Volume 27, Number 2, 139-148.
-
7Gadjiev A.D., Aral A., (2007) The Estimates of Approximation by using a new type of weighted modulus of continuity, Computers and Mathematics with Applications, Volume 54, 127-135.
-
8Anastassiou G.A., (1999) Inequalities for Local Moduli of Continuity, Applied Mathematics Letters, Volume 12, 7-12.
-
1陈忠,周永芳,赵春燕.求解线性Volterra-Fredholm方程的新方法[J].哈尔滨师范大学自然科学学报,2015,31(3):44-45. 被引量:1
-
2赵华祥,闫宝强.抽象空间中非线性脉冲Fredholm积分方程的正解[J].山东工业大学学报,1999,29(4):328-332.
-
3石军.非光滑下Fredholm方程的校正galerkin方法[J].中国科学院研究生院学报,1992,9(4):350-355.
-
4刘清荣,田有先.一类线性积分方程解的存在唯一性[J].纯粹数学与应用数学,1994,10(2):110-113.
-
5崔俭春,刘福春.带有变换及共轭的奇异积分方程[J].石油大学学报(自然科学版),1997,21(6):104-105.
-
6谭长明.Banach空间Fredholm型积分方程解的存在性判定[J].通化师范学院学报,2007,28(2):8-9.
-
7曾红云.周期孔洞的混合边值问题[J].湘潭大学自然科学学报,2000,22(4):19-22. 被引量:1
-
8杨平,伍继梅,吴开谡.无穷限第一类Fredholm方程的正则化方法[J].北京化工大学学报(自然科学版),2013,40(B12):117-121. 被引量:1
-
9房艮孙.核由混合偏导数优控的Fredholm方程类的计算复杂性[J].中国科学(A辑),1995,25(10):1019-1028. 被引量:6
-
10黄正达.积分算子的n-逼近数[J].数学学报(中文版),1994,37(3):338-348.