摘要
利用非线性反馈控制实现了不确定混沌系统对任意信号的到达跟踪控制问题。根据系统结构特点选取合适的反馈方式,设计非线性控制律,并由滑模变结构控制理论证明了误差信号指数趋于零以及系统所有状态有界。与现有文献所得控制律算法相比,本文所设计的控制律不仅考虑了系统的不确定性,同时保证了系统所有状态有界,该方法是一种物理可实现的到达跟踪控制方法。数值仿真结果进一步证实了该方法的可行性。
Tracking and controlling to reaching of arbitrary signals in uncertain chaotic system is realized by nonlinear feedback control. Proper feedback mode is selected according to the characteristic of system structure, and a nonlinear controller is designed. The sliding mode control theory is applied to prove that the error signal is exponentially stable at zero and all variables in controlled system are bounded. Compared with the control laws in current literature, the controller designed here not only takes the uncertainty of the system into consideration, but also guarantees that all the system states are bounded. The proposed method is a physically feasible tracking control strategy. The results of numerical simulation further proved the feasibility of this method.
出处
《电光与控制》
北大核心
2015年第11期52-55,60,共5页
Electronics Optics & Control
基金
国家自然科学基金(61203293)
河南师范大学博士科研启动经费(510101917015)
关键词
不确定混沌系统
跟踪控制
滑模变结构控制
混沌同步
uncertain chaotic system
tracking control
sliding mode control
chaotic synchronization