期刊文献+

基于代价敏感学习的软件缺陷预测方法 被引量:1

Software Defect Prediction Based on Cost-sensitive Learning
下载PDF
导出
摘要 软件缺陷预测是改善软件开发质量、提高测试效率的重要途径。文中分析了软件缺陷预测的特点,同时针对当前软件缺陷预测中存在特征冗余问题和类不平衡问题进行了深入研究。首先为了解决软件模块中的特征冗余问题给软件缺陷预测造成困难,提高对软件缺陷预测的准确率,采用基于代价敏感的拉普拉斯特征映射方法(CSLE)对原样本空间进行降维,改进拉普拉斯算法(LE)中的距离度量方式,提高降维映射精度;然后通过基于代价敏感的神经网络的方法(CSBPNN)对软件模块进行分类,调整BP神经网络的权值和偏置参数,使BP神经网络对有缺陷软件模块的误分更加敏感,进一步提高分类效果。在NASA软件缺陷标准数据集上与最新的几种软件缺陷预测方法相比,文中提出的方法能够有效提高有缺陷样本的召回率和F-measure值。 Software defect prediction is an important way to improve the quality of software development and raise the testing efficiency. In this paper, analyze the characteristics of software defect prediction and focus on the research of redundancy features and the imbalance class problem existed in current software defect. In order to solve the difficulty of software defect prediction caused by redundancy features in software modules ,improving the accuracy for software defect prediction, adopt a new method named Cost-Censitive Laplacian Eigenmaps (CSLE) to reduce the dimensionality of original sample space, improving the distance measurement method of Laplacian Eigenmaps (LE) to enhance the dimension reduction mapping accuracy. In addition,propose a new method named Cost Sensitive Back Propagation Neural Network (CSBPNN) to classify the software module, adjusting the weights and bias parameters of BP neural net-work,which makes the error of BP neural network to flawed software modules points more sensitive,further improving the classification effect. Compared with the latest several software defect prediction methods on NASA software datasets, prove that this method can improve the recall rate and F -measure value in software defect prediction.
出处 《计算机技术与发展》 2015年第11期58-60,66,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61272273) 江苏省333工程项目(BRA2011175) 南京邮电大学校科研项目(XJKY14016)
关键词 软件缺陷预测 代价敏感 拉普拉斯特征映射 神经网络 software defect prediction cost-sensitive Laplacian Eigenmaps neural network
  • 相关文献

参考文献14

  • 1Lyu M R. Software reliability engineering: a roadmap [ C ]// Proc of future of software engineering. Minneapolis, MN : IEEE Computer Society,2007 : 153-170.
  • 2Seliya N, Khoshgoftaar T M, van Hulse J. Predicting faults in high assurance software [ C ]//Proc of 2010 IEEE 12th inter- national symposium on high-assurance systems engineering. San Jose : IEEE ,2010:26-34.
  • 3Catal C, Diri B. A systematic review of software fault predic- tion studies [ J ]. Expert Systems with Applications, 2009,36 (4) :7346-7354.
  • 4Hall T, Beecham S, Bowes D, et al. A systematic literature re- view on fault prediction performance in software engineering [ J ]. IEEE Transactions on Software Engineering, 2012,38 (6) :1276-1304.
  • 5Elish K O ,Elish M O. Predicting defect-prone software mod-ules using support vector machines[./]. Journal of Systems and Software ,2008,81 (5) :649-660.
  • 6Wang J, Shen B, Chen Y. Compressed CA. 5 models for soft- ware defect prediction [ C ]//Proc of 2012 12th international conference on quality software. Washington D C : IEEE, 2012 : 13-16.
  • 7Wang T, Li W. Naive Bayes software defect prediction model [ C ]//Proc of 2010 international conference on computational intelligence and software engineering. [ s. 1. ] : [ s. n. ] ,2010: 1-4.
  • 8Song Q, Jia Z, Shepperd M, et al. A general software defect- proneness prediction framework [ J ]. IEEE Transactions on Software Engineering,2011,37 (3) :356-370.
  • 9Sun Z, Song Q, Zhu X. Using coding-based ensemble learning to improve software defect prediction [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part C : Applications and Reviews,2012,42 (6) :1806-1817.
  • 10Wang H, Khoshgoftaar T M, Seliya N. How many software met- ties should be selected for defect prediction? [ C]//Proe of FLAIRS. Palm Beach : [ s. n. ] ,2011.

二级参考文献25

  • 1MENZIES T, GREENWALD J, FRANK A. Data mining static code attributes to learn defect predictors [ J ]. IEEE Transac- tion on Software Engineering,2007,32 ( 11 ) : 2 - 13.
  • 2LESSMANN S, BAESENS B, MUES C, et al. Benchmarking classification models for software defect prediction: a pro- posed framework and novel findings [ J ]. IEEE Transactions on Software Engineering, 2008,4 ( 34 ) :485 - 496.
  • 3KHOSHGOFFAAR T M, PANDYA A S, LANNING D L. Ap- plication of neural networks for predicting defects [ J]. An- nals of Software Engineering, 1995,1 ( 1 ) : 141 - 154.
  • 4MENZIES T, DISTEFANO J, ORREGO A, et al. Assessing predictors of software defects [ C ]. In Proceedings of Work- shop on Predictive Software Models ,2004.
  • 5PORTER A, SELBY R W. Evaluating techniques for genera- ting metric - based classification trees [ J ]. Journal of Sys- tems and Software, 1997,12 (2) : 166 - 173.
  • 6BOEHM B W, PAPACCIO P N. Understanding and control- ling software costs [ J ]. IEEE Transactions on Software Engi- neering, 1988,14(10) : 1462 - 1477.
  • 7BOEHM B W. Industrial software metrics top 10 list [J]. IEEE Software, 1987,4 (5) : 84 - 85.
  • 8MALOOF M A. Learning when data sets are imbalanced and when costs are unequal and unknown [ C ]. Washington, DC : In Working Notes of the ICML'03 Workshop on Learning from Imbatanced Data Sets ,2003,8:328 -334.
  • 9ZHOU Z H, LIU X Y. Training cost - sensitive neural net- works with methods addressing the class imbalance problem [ J]. IEEE Transactions on Knowledge and Data Engineer- ing,2006,18( 1 ) :63 -77.
  • 10BREIMAN L,FRIEDMAN J H, OKSHEN R A, et al. Classifica- tion and regression trees [ M ]. Belmont, CA :Wadsworth, 1984.

共引文献19

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部