期刊文献+

IFS-LSSVM及其在时延序列预测中的应用 被引量:3

IFS-LSSVM and its application in time-delay series prediction
下载PDF
导出
摘要 针对最小二乘支持向量机预测模型中最优参数难以确定的问题,提出一种基于改进的自由搜索算法确定最小二乘支持向量机最优参数的方法(IFS-LSSVM)。对标准自由搜索算法进行改进,使之可应用于最小二乘支持向量机的参数优化,改进之后的算法具有更好的优化性能。将具有时间序列性质的网络时延作为预测对象,利用本文的IFS-LSVM算法进行预测。在仿真中与遗传算法优化的最小二乘支持向量机(GA-LSSVM)、粒子群优化算法优化的最小二乘支持向量机(PSOLSSVM)、标准最小二乘支持向量机工具箱中的网格搜索算法(Grid-LSSVM)进行了对比。仿真对比结果表明本文的方法具有更高的预测精度与更小的预测误差。 It is difficult to determine the optimal parameters of least squares support vector machine prediction model,so a prediction method based on improved free search algorithm( IFS-LSSVM) was proposed to determine the optimal parameters of least squares support vector machines. First,the standard free search algorithm was improved so that it can be applied to the parameter optimization of least squares support vector machines,the improved harmony search algorithm has better optimization performance.Then the least squares support vector machines was applied to predict the time-delay series of the network based on improved free search optimization algorithm. Finally,time-delay series was used as prediction simulation object,genetic algorithm optimized least squares support vector machines( GA-LSSVM),particle swarm optimization algorithm optimized least squares support vector machines( PSO-LSSVM),standard grid search method of least squares support vector machines( Grid-LSSVM) toolbox were compared. Simulation comparison results show that the proposed method has higher prediction accuracy and smaller prediction error.
出处 《电机与控制学报》 EI CSCD 北大核心 2015年第11期104-110,共7页 Electric Machines and Control
基金 国家自然科学基金(61034005) 辽宁省博士科研启动基金(20141070)
关键词 最小二乘支持向量机 自由搜索 时延序列 预测 时间序列 least squares support machines free search time-delay series prediction time series
  • 相关文献

参考文献18

  • 1DINGS F,HUA X P,YU Z J. An overview on nonparallel hyper- plane support vector machine algorithms [ J ]. Neural Computing and Applications ,2013,25 ( 5 ) :975 -982.
  • 2SUYKENS J A K,VANDEWALLE J. Least squares support vector machines classifiers [ J ]. Neural Processing Letters, 1999,9 ( 3 ) : 293 - 300.
  • 3田中大,高宪文,李琨.基于EMD与LS-SVM的网络控制系统时延预测方法[J].电子学报,2014,42(5):868-874. 被引量:16
  • 4田中大,高宪文,史美华,李琨.资源受限网络控制系统的模糊反馈调度[J].电机与控制学报,2013,17(1):94-101. 被引量:6
  • 5HU T J, HUANG X X, TAN Q. Time delay prediction for space teleoperation based on non-Gaussian auto-regressive model [ C ]// 2012 Proceedings of International Conference on Modelling, Iden- tification & Control (ICMIC) , June 24-26, 2012, Wuhan, Chi- na. 2012:567-572.
  • 6时维国,邵诚,孙正阳.基于AR模型时延预测的改进GPC网络控制算法[J].控制与决策,2012,27(3):477-480. 被引量:30
  • 7YANG M, RU J, LI X R, et al. Predicting Internet end-to-end delay: a multiple-model approach [ C ]//24th Annual Joint Con- ference of the IEEE Computer and Communications Societies, March 13 -17, 2005, Miami, USA. 2005, 4:2815-2819.
  • 8TABIB S R S, JALALI A A. Modelling and prediction of internet time-delay by feed-forward multi-layer perceptron neural network [ C ]//Second UKSIM European Symposium on Computer Model- ing and Simulation, Sept 8 - 10, 2008, Liverpool, England. 2008:611 -616.
  • 9RAHMANI B, MARKAZI A H D, MOZAYANI N. Real time pre- diction of time delays in a networked control system [ C ]//Pro- ceedings of the 3rd International Symposium on Communications, Control and Signal Processing, March 12 -14, 2008, St Julians, Malta. 2008 : 1242 - 1245.
  • 10SADEGHZADEH N, AFSHAR A, MENHAJ M B. An MLP neu- ral network for time delay prediction in networked control systems [ C ]//Control and Decision Conference, July 2 - 4, 2008, Yan- tai, China. 2008 : 5314 -5318.

二级参考文献104

共引文献152

同被引文献32

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部