期刊文献+

黄曲霉漆酶基因HIGS载体的构建及对花生的转化 被引量:1

Construction of HIGS Vectors for Laccase Genes from Aspergillus flavus and Its Transformation to Peanut
下载PDF
导出
摘要 黄曲霉毒素污染严重影响着花生食品安全。通过常规育种的方式培育抗黄曲霉花生新品种进展缓慢,效果也难如人意。HIGS(Host-Induced Gene Silencing,寄主诱导的转基因沉默)技术是一种新兴的RNA干扰技术,为培育抗病植物提供了可能。但该技术在花生上的应用尚未见报道。为创造抗黄曲霉花生新品系,本研究利用该技术构建了两个黄曲霉漆酶基因(Lac1和Lac2)的HIGS载体,并试图将其转化到易感黄曲霉的花生品种粤油20中,获得了转Lac1基因的PCR阳性种子。根据HIGS的原理,黄曲霉侵染后,转基因花生中产生的dsRNA将抑制黄曲霉漆酶基因表达,从而使转基因花生对黄曲霉产生抗性。基于该原理,下一步将对转基因种子是否抗黄曲霉侵染进行鉴定。本研究为利用HIGS技术探索黄曲霉漆酶基因与黄曲霉致病性的关系奠定了基础,为培育抗黄曲霉花生品种提供了一条新思路。 Aflatoxin contamination is a severe problem adversely affecting peanut food safety.Breeding a new peanut variety resistant to Aspergillus flavus is a lengthy process through conventional means,and the re-sults are far from satisfaction.Host -induced gene silencing (HIGS),as a novel technology for RNA interfer-ence,provides possibilities for creating disease -resistant crop plants.However,there is no reports on pea-nut.To breed new A.flavus -resistant peanut through genetic engineering,the HIGS vectors containing 2 lac-case genes,Lac1 and Lac2,were constructed and then were transformed into an A.flavus -susceptible peanut cultivar Yueyou 20.PCR -positive transgenic peanut seeds with Lac1 gene were obtained.According to the HIGS principle,if the transgenic peanut is infected by A.flavus,the laccase gene expression will be inhibited by dsRNA,thus the resistance of peanut to A.flavus will be induced.Based on this principle,whether the transgenic seeds had resistance to A.flavus infection would be identified next.The study layed foundations for exploring the relationship between laccase gene and A.flavus pathogenicity in peanut,and provided a new way for breeding peanut cultivars with A.flavus resistance.
出处 《山东农业科学》 2015年第10期8-12,共5页 Shandong Agricultural Sciences
基金 国家花生产业技术体系(CARS-15) 山东省农业科学院重大科技成果培育计划项目(2014CGPY09)
关键词 花生 黄曲霉 漆酶基因 寄主诱导的转基因沉默(HIGS) 遗传转化 Peanut Aspergillus flavus Laccase gene Genetic transformation
  • 相关文献

参考文献21

  • 1许婷婷,宫清轩,江晨,杨伟强.我国花生产业的发展现状与前景展望[J].山东农业科学,2010,42(7):117-119. 被引量:33
  • 2Ahuja I,Kissen R,Bones A M,et al.Phytoalexins in defense against pathogens[J].Trends in Plant Science,2012,17:73-90.
  • 3Sobolev V S,Guo B Z,Holbrook C C,et al.Interrelationship of phytoalexin production and disease resistance in selected peanut genotypes[J].Journal of Agricultural and Food Chemistry,2007,55:2195-2200.
  • 4Sobolev V S,Khan S I,Tabanca N,et al.Biological activity of peanut(Arachis hypogaea)phytoalexins and selected natural and synthetic stilbenoids[J].Journal of Agricultural and Food Chemistry,2011,59:1673-1682.
  • 5Chen X,Liu W,Zhao C,et al.Functional analysis of two laccase genes in Magnaportbe grisea[M]//Wang G L,Valent B,eds.Advances in genetics,genomics and control of rice blast disease.Dordrecht,The Netherlands:Springer,2009:51-57.
  • 6Thurston C F.The structure and function of fungal laccases[J].Microbiology,1994,140:19-26.
  • 7Kim D H,Rigling D,Zhang L,et al.A new extracellular laccase of Cryphonectria parasitica is revealed by deletion of Lac1[J].Molecular Plant Microbe-Interact,1995,8:259-266.
  • 8Liu L,Wakamatsu K,Ito S,et al.Catecholamine oxidative products,but not melanin,are produced by Cryptococcus neoformans during neuropathogenesis in mice[J].Infection and Immunity,1999,67(1):108-112.
  • 9Nosanchuk J D,Rosas A L,Lee S C,et al.Melanisation of Cryptococcus neoformans in human brain tissue[J].Lancet,2000,355:2049-2050.
  • 10Zhu X,Gibbons J,Zhang S,et al.Copper-mediated reversal of defective laccase in aΔvph1 avirulent mutant of Cryptococcus neoformans[J].Molecular Microbiology,2003,47:1007-1014.

二级参考文献29

  • 1安泽伟,黄华.一种提取橡胶树叶中总DNA的方法[J].植物生理学通讯,2005,41(4):513-515. 被引量:66
  • 2Halpin C, Cooke S E, Barakate A, Amrarfi A E and Ryan M D, 1999. Self-processing 2A-polyproteins-a system for co- ordinate expression of multiple proteins in transgenic plants. Plant Journal, 7(4): 453-459.
  • 3Halweg C, Thompson WF and Spiker S, 2005. The rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells: A flow cytometric study. Plant Cell, 17:418-429.
  • 4Johnston K. Clements A, Venkatammani R N, Trievel R C and Marmorstein R, 2000. Coexpression of proteins in bacteria using T7-based expression plasmids: Expression of heteromeric cell- cycle and transcriptional regulatory complexes. Protein Expression and Purification, 20:435-443.
  • 5Koncz C and Schell J, 1986. The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacteritma binary vector. Molecular and General Genetics, 204:383-386.
  • 6Lee H Y and Khosla C, 2007. Bioassay-guided evolution of glycosylated macrolide antibiotic in Escherichia coli. Plos Biologyl, 5(2): 243-250.
  • 7Luke G A, 2012. Translating 2A research into practice, Agbo E C (ed.), Innovations in Biotechnology. InTech, Rijeka, Croatia, pp. 161-186.
  • 8Nakamura S, Mano S, Tanaka Y, Ohnishi M, Nakamori C, Amki M, Niwa T, Nishimura M, Kaminaka H, Nakagawa T, Sato Y and Ishiguro S, 2010. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Bioscience, Biotechnology and Biochemistry, 74 (6): 1315-1319.
  • 9Perlak F J, Deaton R W, Armstrong T A, Fuchs R L, Sims S tL Greenplate J T and FischhoffD A, 1990. Insect resistant cotton plant. Nature Biotechnology, 8:939-943.
  • 10Rally L, Enfissi E M A, Misawa N, Schuch W, Bramley P M and Fraser P D, 2004. Metabolic engineering of ketocarotenoid formation in higher plants. Plant Journal, 39:477-486.

共引文献42

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部