期刊文献+

水性聚氨酯/功能化石墨烯纳米复合材料的非等温结晶动力学 被引量:2

Non-isothermal Crystallization Kinetics of Waterborne Polyurethane/functionalized Graphene Nanocomposites
下载PDF
导出
摘要 采用差示扫描量热法DSC研究了水性聚氨酯/功能化石墨烯(WPU/FGNs)纳米复合材料的非等温结晶行为,分别采用Ozawa方程、莫志深方程研究复合材料的非等温结晶动力学,并通过Kissinger方程计算了结晶过程中的活化能。结果表明,石墨烯在复合材料的结晶过程中起到异相成核剂的作用,提高了复合材料的结晶起始温度、峰值温度和结晶速率;增加石墨烯的质量分数,复合材料的结晶维数增加;石墨烯增加至0.3%,复合材料的活化能从-47.74 k J/mol降低至-53.60 k J/mol,继续增加石墨烯至1.0%,复合材料的活化能增加至-41.74 k J/mol。 The non-isothermal crystallization behavior of waterborne polyurethane / functionalized graphene nanocomposites( WPU / FGNs) was studied by differential scanning calorimetry( DSC). The non-isothermal crystallization kinetics of WPU / FGNs was investigated by Ozawa and Mo equations,and the crystallization activation energies were calculated by Kissinger equation. The results show that FGNs can be used as heterogeneous nucleation agent to increase the onset of crystallization temperature,peak temperature and crystallization rate of WPU during non-isothermal crystallization process of WPU / FGNs. Crystallization dimension of the composites increases with the increase of the mass fraction of FGNs. When the mass fraction of FGNs increases to 0. 3%,crystallization activation energy of the composite decreases from- 47. 74 k J / mol to- 53. 60 k J / mol. When the mass fraction of FGNs is 1. 0%,the crystallization activation energy of the composite increases to- 41. 74 k J / mol.
出处 《应用化学》 CAS CSCD 北大核心 2015年第11期1319-1326,共8页 Chinese Journal of Applied Chemistry
基金 安徽省高等学校自然科学研究资助项目(KJ2012B141)~~
关键词 石墨烯 水性聚氨酯 非等温结晶 结晶动力学 functionalized graphene nanocomposites waterborne polyurethane non-isothermal crystallization crystallization kinetics
  • 相关文献

参考文献19

  • 1Lee C G, Wei X D, Kysar J W,et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene [J]. Science,2008,321( 5887 ) :385-388.
  • 2Nair R R, Blake P, Grigorenko A N,et al. Fine Structure Constant Defines Visual Transparency of Graphene[ J]. Science, 2008,320(5881 ) : 1308-1308.
  • 3Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional Gas of Massless Dirac Fermions in Graphene [ J ]. Nature ,2005,438 (7065) : 197-200.
  • 4Balandin A A, Ghosh S, Bao W Z,et al. Superior Thermal Conductivity of Single-layer Graphene [ J ]. Nano Lett, 2008,8 (3) :902-907.
  • 5Stoller M D,Park S,Zhu Y W,et al. Graphene-based Uhraeapacitors[J]. Nano Lett,2008,8(10) :3498-3502.
  • 6Singh V,Joung D,Zhai L,et al. Graphene Based Materials:Past, Present and Future[J]. Prog Mater Sci,2011, (56) : 1178-1271.
  • 7Leblanc J L. Rubber filler Interactions and Rheological Properties in Filled Compounds [ J ]. Prog Polym Sci, 2002,27 (4) :627-687.
  • 8Luo X M,Zhang , Ren J,et al. Preparation and Properties of Functionalized Graphene/waterborne Polyurethane Composites with Highly Hydrophobic[ J]. J Appl Polym Sci,2015,132(23) :DOI:10. 1002/APP. 42005.
  • 9Pokharel P, Lee D S. Thermal and Mechanical Properties of Reduced Graphene Oxide/Polyurethane Nanocomposite[ J]. J Nanosci Nanotechno1,2014 ,14 (8) :5718-5721.
  • 10Donath F A. Experimental Study of Shear Failure in Anisotropic Rocks [ J ]. Geol Soc Am Bull, 1961,72 (6) :985-989.

二级参考文献50

共引文献205

同被引文献36

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部