期刊文献+

活性炭/LiNi_(0.5)Mn_(1.5)O_4电容器性能及活性炭负极的劣化分析 被引量:1

Properties of Activated Carbon/LiNi_(0.5)Mn_(1.5)O_4 Capacitors and Degradation Analysis of Activated Carbon Anode
下载PDF
导出
摘要 为提高电化学电容器的工作电压,采用电池材料Li Ni0.5Mn1.5O4(LNMO)为正极,活性炭为负极,组装成混合型电容器并探索了提高其性能的最佳条件。负/正极质量比增加、充放电截止电压的升高均能显著提高电容器的放电容量和能量密度,在负/正质量比为4,电压0~3 V,电流密度1×10^-3A/cm^2的条件,700次循环后容量保持率达97.5%。运用三电极体系、电化学阻抗谱等测试手段对此负极活性炭的劣化及其对电容器性能的影响进行了深入探索。 In order to improve the working voltage of electrochemical capacitors,Li Ni0. 5Mn1. 5O4( LNMO) was employed as the positive electrode material and activated carbon( AC) was used as the negative electrode material for the asymmetric electrochemical capacitors and the optical conditions was explored. Enhancing the mass ratio of AC / LNMO and the voltage ranges could both increase the discharge capacity and energy density.At the AC / LNMO mass ratio of 4 and in the 0 ~ 3 V voltage range,97. 5% capacity retention was achieved after 700 cycles at current density of 1 × 10^-3A / cm^2. Three-electrode system and electrochemical impedance spectroscopy were applied to explore the degradation of AC anode,and we also analyzed its influence in the AC / LNMO asymmetric capacitors.
出处 《应用化学》 CAS CSCD 北大核心 2015年第11期1327-1334,共8页 Chinese Journal of Applied Chemistry
基金 江苏省科技支撑计划(BE2013006-3)资助~~
关键词 LI Ni0.5Mn1.5O4 活性炭 电化学电容器 劣化机制 Li Ni0.5Mn1.5O4 activated carbon electrochemical capacitors degradation
  • 相关文献

参考文献19

  • 1Cericola D, NovOk P, Wokaun A, et al. Hybridization of Electrochemical Capacitors and Rechargeable Batteries: An Experimental Analysis of the Different Possible Approaches Utilizing Activated Carbon, Li4TisO12 and LiMn204 [ J ]. J Power Sources, 2011,196 : 10305-10313.
  • 2Yang J J, Choi C H, Seo H B, et al. Voltage Characteristics and Capacitance Balancing for LinTisOx2/activated Carbon Hybrid Capacitors[ J]. Electrochim Acta,2012,86:277-281.
  • 3Zhao L P, Qi L,Wang H Y. Sodium Titanate Nanotube/graphite, an Electric Energy Storage Device Using Na+-based Organic Electrolytes[ J ]. J Power Sources ,2013,2422:597-603.
  • 4Hahn M, Wtirsig A, KStz R ,et al. Gas Evolution in Activated Carbon/propylene Carbonate Based Double-layer Capacitors [ J ]. Electrochem Commun,2005,7 : 925-930.
  • 5Wang L P, Li H, Courty M, et al. Preparation and Characterization of LiNi0.5 Mnx.s 04_8 Thin Films Taking Advantage of Correlations with Powder Samples Behavior[ J]. J Power Sources ,2013,232 : 165-172.
  • 6Duncan H, Duguay D, Abu-Lebdeh Y, et al. Study of the LiNi0.5 Mnl. 50JElectrolyte Interface at Room Temperature and 60 % [ J ]. J Electrochem Soc, 2011,158 (5) : A537-545.
  • 7Wang H Y, Yoshio M. Graphite, a Suitable Positive Electrode Material for High-energy Electrochemical Capacitors [ J ]. Electrochem Commun ,2006,8 : 1481-1486.
  • 8Nagasubramanian A, Vanchiappan A, Sundaramurthy J, et al. Exceptional Performance of a High Voltage Spinel LiNi0.sMnl.504 Cathode in All One Dimensional Architectures With an Anatase TiO2 Anode by Electrospinning [ J]. Nanoscale ,2014,6:8926-8934.
  • 9Giuseppe A E, Francesco N, Roberto T, et al. Nanostructured Tin-carbon/LiNi0.5 Mn~.5 04 Lithium-ion Battery Operating at Low Temperature [ J ]. J Power Sources, 2015,275 : 227-233.
  • 10Li H Q,Cheng L,Xia Y Y. A Hybrid Electrochemical Supercapacitor Based on a 5 V Li-ion Battery Cathode and Active- Carbon[ J]. Electrochem Solid-State Lett ,2005,8:433-436.

二级参考文献4

共引文献2

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部