期刊文献+

模糊水平集心脏CT图像序列分割方法 被引量:5

Fuzzy level set segmentation method for cardiac CT image sequence
下载PDF
导出
摘要 为解决心脏CT图像序列传统分割方法人工交互复杂、效率低的问题,提出一种模糊水平集分割方法。只需选定单张心脏CT图像,利用改进后的模糊聚类算法获取感兴趣区域初始轮廓,将其结果用于引导C-V模型水平集进行心脏组织精准分割。为有效减少图像序列分割时间及人工交互,由单张图像分割结果作为其空间相邻图像水平集的初始轮廓,避免重复性聚类过程,循环迭代得到每张图像最终轮廓位置。实验结果表明,该算法能准确分割出心脏各组织边缘,时间代价小、人工交互简单,分割结果能为心脏三维重建提供准确的数据集。 A fuzzy level set segmentation method was proposed to solve the complexity and low efficiency problems of the conventional cardiac CT image sequence segmentation method.This method could be realized only by selecting a single cardiac CT images,and using the improved fuzzy clustering algorithm to extract the initial outline of the region of interest(ROI).Its results were used to guide the C-V model level set for cardiac tissues precise segmentation.To effectively reduce the time cost for image sequence segmentation and human interaction,each segmentation result was used as the initial contour of its adjacent images.This access avoided the repetitive clustering process,and the final outline of the image was obtained.Experimental results demonstrate that the algorithm can accurately segment the edge of the heart organization with less time and simple human interaction.Besides,the segmentation results can provide accurate data set for the three-dimensional heart reconstruction.
出处 《计算机工程与设计》 北大核心 2015年第11期3030-3034,3045,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(51205185) 2012年度江苏省"青蓝工程"中青年学术带头人基金项目
关键词 水平集方法 图像分割 模糊聚类 心脏图像序列 三维重建 level set method image segmentation fuzzy clustering cardiac CT image sequences 3Dreconstruction
  • 相关文献

参考文献10

  • 1Kang D,Woo J,Slomka PJ,et al.Heart chambers and whole heart segmentation techniques:Review[J].Journal of Electronic Imaging,2012,21(1):010901-1-010901-16.
  • 2Greenwood JP,Maredia N,Younger JF,et al.Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease(CEMARC):A prospective trial[J].The Lancet,2012,379(9814):453-460.
  • 3Sherwin ED,Triedman JK,Walsh EP.Update on interventional electrophysiology in congenital heart disease evolving solutions for complex hearts[J].Circulation:Arrhythmia and Electrophysiology,2013,6(5):1032-1040.
  • 4Zhuang X,Rhode K,Arridge S,et al.An atlas-based segmentation propagation framework using locally affine registration-application to automatic whole heart segmentation[M]//Medical Image Computing and Computer-Assisted Intervention-MICCAI.Berlin:Springer Berlin Heidelberg,2008:425-433.
  • 5Chen F,Yang X,Longhi B,et al.Whole heart region segmentation from CT and MRI images using a hybrid model[C]//2nd International Congress on Image and Signal Processing.IEEE,2009:1-5.
  • 6Strunic SL,Rios-Gutiérrez F,Alba-Flores R,et al.Detection and classification of cardiac murmurs using segmentation techniques and artificial neural networks[C]//IEEE Symposium on Computational Intelligence and Data Mining,2007:397-404.
  • 7Rios-Gutierrez F,Alba-Flores R,Strunic S.Recognition and classification of cardiac murmurs using ANN and segmentation[C]//22nd International Conference on Electrical Communications and Computers.IEEE,2012:219-223.
  • 8徐玲凌,肖进胜,易本顺,娄利军.改进的C-V水平集模型图像分割算法[J].计算机工程,2009,35(10):209-210. 被引量:17
  • 9陈志彬,邱天爽,SU Ruan.一种基于FCM和LevelSet的MRI医学图像分割方法[J].电子学报,2008,36(9):1733-1736. 被引量:26
  • 10Li BN,Chui CK,Chang S,et al.Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation[J].Computers in Biology and Medicine,2011,41(1):1-10.

二级参考文献14

  • 1肖进胜,冯慧,易本顺,郭兰英.半线性抛物型微分包含的有限差分法[J].武汉大学学报(理学版),2006,52(3):262-266. 被引量:5
  • 2龚永义,罗笑南,黄辉,廖国钧,张余.基于单水平集的多目标轮廓提取[J].计算机学报,2007,30(1):120-128. 被引量:22
  • 3Chan F T, Vese L. Active Contours Without Edges[J]. IEEE Trans. on Image Processing, 2001, 10(2): 266-277.
  • 4Mumford D, Shah J. Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems[J]. Communication of Pure Applied Mathematics, 1989, 42(5): 577-685.
  • 5A Chakraborty, L H Staib, J S Duncan. Deformable boundary finding in medical images by integrating gradient and region information [ J]. IEEE Trans. On Medical Imaging, 1996, 15 (6) :859 - 870.
  • 6C S Poon, M Brain. Image segmentation by a deformable contour model incorporating region analysis [ J ]. Physics in Medicine and Biology, 1997,42:1833- 1841.
  • 7N Paragios, R Deriche. Unifying boundary and region-based information for geodesic active tracking [A]. IEEE Conference on Computer Vision Pattern Recognition [C]. Colorado: IEEE Computer Society Press, 1999.300 - 305.
  • 8V Caselles, R Kimmel, G Sapiro. Geodesic active contours [J]. Journal of Computer Vision, 1997,22(1) :61-79.
  • 9J S Suri. White matter/gray matter boundary segmentation using geometric snakes: a fuzzy deformable model [ A] .Proceeding of the Second International Conference on Advances in Pattera Recognition [C]. London: Springer-Verlag, 2001.331 - 338.
  • 10J S Suri, K Liu,S Singh, S N Laxminarayan, X Zeng,L Reden. Shape recovery algorithms using level sets in 2-d/3-d medical imagery: a state-of-the-art review [J]. IEEE Trans On Information Technology in Biomedicine, 2002,6(1) :8- 28.

共引文献41

同被引文献69

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部