期刊文献+

基于UKF的共轴式无人直升机模型辨识 被引量:3

Identification of unmanned coaxial helicopter model based on UKF
原文传递
导出
摘要 建立了共轴式无人直升机系统非线性模型,并针对其非线性强,不同飞行模态下气动参数差异等问题,将无迹卡尔曼滤波(UKF)引入共轴式直升机系统非线性模型辨识,不但避免了直升机线性模型仅仅适用于悬停模态的局限性,同时为直升机系统在线自适应控制提供了基础条件,使得共轴式无人直升机自主全包线飞行成为可能.以北京航空航天大学FH-1共轴式无人直升机为例进行了仿真辨识实验.实验结果表明基于该方法的共轴式直升机在线非线性模型辨识不依赖于参数初值的选取,模型参数能在10s内收敛,各状态量辨识精度达到80%以上,明显高于传统的预报误差法(PEM),具有一定的实用性. Nonlinear model of the unmanned coaxial helicopter system was built, and on account of considering its strong nonlinear character, as well as the aerodynamic parameters were variable under different flight modes, the unscented Kalman filter (UKF) was intro- duced to solve the nonlinear model identification problem of coaxial helicopter. It did not on- ly avoid the limitations that linear model was only appropriate to hover modes of helicopter model, but also provided the basis for the online adaptive control of helicopter system, in which autonomous unmanned coaxial helicopter's full envelope flight could be possible. Iden- tification of the FH-1 unmanned coaxial helicopter developed by Beijing University of Aero- nautics and Astronautics was simulated by the approach and the predictive error method (PEM). Simulation experiment results show that the online identification of coaxial helicop- ter nonlinear system based on UKF does not depend on the selection of initial parameters, parameters can converge within the validity period of 10s; and the accuracy of identification reached 80%, which is higher than the classical PEM, so it has a certain practicality.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2015年第10期2523-2530,共8页 Journal of Aerospace Power
关键词 无迹卡尔曼滤波 非线性系统 无人直升机 共轴式直升机 在线辨识 unscented Kalman filter nonlinear system unmanned helicopter coaxial helicopter online identification
  • 相关文献

参考文献18

  • 1王强,陈铭,王保兵,苏兵兵.旋翼几何参数对共轴双旋翼悬停性能的影响[J].航空动力学报,2014,29(6):1434-1443. 被引量:13
  • 2周国仪,胡继忠,曹义华,王晋军.共轴式直升机双旋翼载荷计算模型研究[J].航空动力学报,2003,18(3):343-347. 被引量:18
  • 3Koehl A,Rafaralahy H,Boutayeb M,et al.Aerodynamic modelling and experimental identification of a coaxial-rotor UAV[J].Journal of Intelligent and Robotic Systems,2012,68(1):53-68.
  • 4Kumar R,Ganguli R,Omkar S N,et al.Rotorcraft parameter identification from real time flight data[J].Journal of Aircraft,2008,45(1):333-341.
  • 5WANG Xiaodong,ZHAO Xiaoguang,TAN Min.Modeling,identification and robust control of yaw dynamics of small-scale unmanned helicopters[C]//5th International Conference on Natural Computation.Piscataway,NJ,USA:IEEE,2009:273-276.
  • 6宋彦国,孙涛.旋翼飞行器飞行动力学系统辨识建模算法[J].南京航空航天大学学报,2011,43(3):387-392. 被引量:10
  • 7赵志刚,苟向峰,吕恬生.基于GA的小型无人直升机航向模型进化辨识[J].机器人,2010,32(3):439-442. 被引量:5
  • 8Cheng R,Tischler M,Schulein,G.RMAX helicopter state-space model identification for hover and forward-flight[J].Journal of the American Helicopter Society,2006,51(2):202-210.
  • 9Raptis I,Valavanis K.Linear and nonlinear control of small-scale unmanned helicopters[M].Dordrecht,Netherlands:Springer,2011.
  • 10Pamadi B N.Performance,stability,dynamics,and control of airplanes[M].2nd ed.Hampton,Virginia:AIAA,2003.

二级参考文献114

  • 1李萍,庄开莲,李静.国外直升机旋翼翼型研究综述[J].直升机技术,2007(3):103-109. 被引量:13
  • 2曾洪江,胡继忠.一种新的自由涡尾迹计算方法[J].航空学报,2004,25(6):546-550. 被引量:6
  • 3王适存.共轴式直升机的双旋翼气动干扰问题[A]..第十一届全国直升机年会论文集[C].山东威海,1995..
  • 4约翰逊w著 孙如林译.直升机理论[M].北京:航空工业出版社,1986..
  • 5Mettler B. Modeling small-scale unmanned rotorcraft for advanced flight control design[D]. Pittsburgh, USA: Carnegie Mellon University, 2001.
  • 6Kim S K. Modeling, identification, and trajectory planning for a model-scale helicopter[D]. Michigan, USA: The University of Michigan, 2001.
  • 7Smith C B, Wereley N M. Damping identification in helicopter rotor system[C]//Annual Forum Proceedings of the American Helicopter Society. Alexandria, VA, USA: AHS, 1998: 391- 407.
  • 8Akramizadeh A, Farjami A A, Khaloozadeh H. Nonlinear Hammerstein model identification using genetic algorithm[C]//IEEE International Conference on Artificial Intelligence Systems. Piscataway, NJ, USA: IEEE, 2002: 351-356.
  • 9Liu C L, Liu J Z, Niu Yu G, et al. The application of genetic algorithm in model identification[C]//IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. Piscataway, NJ, USA: IEEE, 2002: 1261-1264.
  • 10Zhao Z G, Lu T S. GA-based evolutionary identification of model structure for small-scale robot helicopter systems[C]//7th International Workshop on Embedded Systems - Modeling, Technology and Applications. Dordrecht, Netherlands: Springer, 2006: 149-158.

共引文献270

同被引文献13

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部