期刊文献+

燃烧模型对钝体稳燃非预混火焰数值模拟精度的影响 被引量:3

Study on Simulation Accuracy of Combustion Models for Stabilized Non-premixed Bluff-body Flames
下载PDF
导出
摘要 为了研究不同燃烧模型在非预混钝体火焰数值计算中的特点,对Sandia实验室HM1火焰进行了数值分析.采用涡耗散概念(EDC)模型、层流小火焰模型和化学平衡模型耦合2种简化机理进行计算,并分别与实验结果进行比较.结果表明:各燃烧模型均能在实验条件下对燃烧过程中的温度场和组分分布等进行正确预测.在使用的3种模型中,层流小火焰模型预测最为精确,且计算速度较快;EDC模型能正确反映变化趋势,但预测所得温度在对称轴附近略高于实验结果;化学平衡模型在燃烧室后部掺混完全的火焰区模拟精度高.层流小火焰模型在研究钝体非预混火焰过程中在计算精度与计算速度方面具有优越性,为进一步进行钝体非预混火焰数值研究奠定了基础. To investigate the characteristics of different combustion models in predicting the non-premixed bluff-body flame, numerical simulations were conducted on Sandia HM1 flames using eddy dissipation concept (EDC) model, laminar flamelet model and chemical equilibrium model coupled with two different reduced mechanisms, of which the results were compared with experimental measurements. Results show that all the combustion models could predict the temperature field and component distribution under experimental conditions. Among the three combustion models, the laminar flamelet model behaves the best because of its high prediction accuracy and high calculation speed. The EDC model succeeds in predicting the trend but over-predicts the temperature in the near-axis region. The chemical equilibrium model has advantages in predicting fully mixed region in the rear of combustion chamber. Due to its high accuracy and high speed, the laminar flamelet model may serve as a reference for further simulation of non-premixed bluffbody flames.
作者 杨诏 李祥晟
出处 《动力工程学报》 CAS CSCD 北大核心 2015年第10期810-815,共6页 Journal of Chinese Society of Power Engineering
关键词 非预混燃烧 燃烧模型 钝体火焰 Sandia HM1火焰 数值模拟 non-premixed combustion combustion model bluff-body flame Sandia HM1 flame numerical simulation
  • 相关文献

参考文献9

  • 1HOSSAIN M, MALALASEKERA W. A combustion model sensitivity study for CH4/Ha bluff-body stabi- lized flame[J]. Proceedings of the Institution of Me- chanical Engineers, Part C.. Journal of Mechanical Engi- neering Science, 2007, 221(11) : 1377-1390.
  • 2BILGER R W. Conditional moment closure for turbu- lent reacting flow[J]. Physics of Fluids, 1993, 5 (2): 436-444.
  • 3ODEDRA A, MALALASEKERA W. Eulerian parti- cle flamelet modeling of a bluff-body CH4/H2 flame [J]. Combustion & Flame, 2007,151(3)..512-531.
  • 4PAVEL P, POPOV S, POPE B. Large eddy simula- tion/probability density function simulations of bluff body stabilized flames[D]. South California, USA: U- niversity of California-Irvine, 2012.
  • 5NISBET J, DAVIDSON L, OLSSON E. Analysis of two fast-chemistry combustion models and turbulence modeling in variable density flow[J]. Computation Flu- id Dynamics,1992, 9(1): 557-563.
  • 6黄庆,朱旻明,叶桃红,陈义良,董刚.钝体驻定湍流扩散火焰的数值研究——燃烧模型比较[J].计算物理,2010,27(2):229-239. 被引量:3
  • 7尹航,钟仕立,戴韧,何定兵.钝体燃烧器湍流预混燃烧流动特性分析[J].动力工程学报,2012,32(2):101-105. 被引量:6
  • 8钟仕立,尹航,戴韧,叶舟,陈永辰.钝体燃烧器湍流预混燃烧的数值模拟[J].动力工程学报,2011,31(3):192-197. 被引量:1
  • 9LU T F, LAW C K. A criterion based on computa- tional singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry[J]. Combustion & Flame, 2008,154(4) :761-774.

二级参考文献15

共引文献7

同被引文献19

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部