期刊文献+

基于稀疏K-SVD字典的图像融合方法 被引量:1

A Novel Image Fusion Method Based on The Sparse K-SVD Dictionary
下载PDF
导出
摘要 稀疏K-SVD算法是一种字典生成方法,它将解析字典的结构性与学习字典的自适应性进行了有效的结合,得到的字典对信号具有很好的稀疏表示能力,理论上,该字典的性能比其他字典更好.为了进一步提高图像融合方法的性能,提出了一种基于稀疏K-SVD字典的图像融合方法.最后通过实验验证了该算法的有效性. The sparse K-SVD algorithm is a method that can produce a dictionary combined the structure of the analytical dictionaries and the adaption of the trained dictionaries effectively,resulting a dictionary that has a good sparse representation capability.Theoretically,this method can achieve better result than other methods.In order to further improve the efficiency of the image fusion method,we propose a novel image fusion method based on the sparse K-SVD dictionary.Finally,the experimental results prove the effectiveness of the algorithm.
作者 葛澎
出处 《微电子学与计算机》 CSCD 北大核心 2015年第11期125-128,共4页 Microelectronics & Computer
关键词 稀疏K-SVD 解析字典 学习字典 图像融合 sparse K-SVD analytical dictionary trained dictionary image fusion
  • 相关文献

参考文献2

二级参考文献23

  • 1杨风暴,韩焱.多探头超声C扫描包覆层粘接图像的融合处理[J].应用基础与工程科学学报,2001,9(2):283-286. 被引量:3
  • 2Xydaes C, Petrovi V. Objective image fusion performance measure[J].Electronic Letters, 2000, 36(4): 308-309.
  • 3Petrovi V, Xydaes C. On the effects of sensors noise in pixel-lever image fusion performance[A].In: Proc of the 3rd International Conference on Information Fusion[C], 2000, (2): 14-19.
  • 4Roggerman M C, Mills J P, Rogers S K. Multi-sensor Information Fusion for Target Detection and Classification[J]. SPIE, 1998, (931): 8-31.
  • 5Deepu Rajan. Data fusion techniques for super-resolution imaging[J].Information Fusion 2002, (3): 25-38.
  • 6SchistadSolberg A H, Jain A K,Taxt T. Multi-source classification of remote sensed data fusion of Landsat TM and SAR images[J].IEEE transactions on Geoscience and Remote Sensing. 1994, 32(4): 768-778.
  • 7WALD L,RANCHIN T,MANGOLINI M. Fusion of satellite Images of Different Spatial Resolutions; Assessing the Quality of Resulting Images[J]. Photogrammetric Engineering and Remote Sensing. 1997, 63(3): 691-699.
  • 8吴秀清,周蓉.一种多分辨率图象数据融合方法及实现[J].计算机工程,2000,26(3):31-32. 被引量:7
  • 9杨?,裴继红,杨万海.基于模糊积分的融合图像评价方法[J].计算机学报,2001,24(8):815-818. 被引量:31
  • 10李树涛,王耀南.基于树状小波分解的多传感器图像融合[J].红外与毫米波学报,2001,20(3):219-222. 被引量:31

共引文献175

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部