期刊文献+

一种改进的ViBe算法结合多特征融合的阴影移除方法 被引量:6

Shadow Elimination Based on Improved Vibe and Multiple Features Fusion
下载PDF
导出
摘要 由于阴影会直接影响监控系统对运动车辆的识别,因此如何有效移除阴影已成为重要的研究内容之一.常用的运动检测ViBe算法存在"鬼影"问题,从而干扰后续帧的检测效果.基于色相的阴影检测算法易受噪声干扰,且不适用于强光照变化的场景.基于纹理的阴影检测算法不依赖于颜色特征,对强光照变化的场景具有较好的健壮性.鉴于上述算法的优劣,提出一种改进的ViBe算法结合多特征融合的阴影移除方法,首先在背景模型初始化中引入高斯分布概率密度函数,并结合原ViBe算法进行模型更新,然后再结合色相和纹理特征进行特征融合,检测出阴影并最终移除阴影.实验结果表明,该方法能有效地检测出车辆且抑制"鬼影",并能在强光照等不同场合下有效地移除阴影,准确地提取运动车辆. Shadow removal is one of the most important parts of moving object detection in the field of intelligent video surveillance since the shadow definitely affects the recognition result.There is a flaw when ViBe algorithm is used to detect moving vehicles,that is,the ghost of moving vehicles would exist over a period in vehicles detection if moving vehicles exist in the first frame and interfere the following detection effect.Chromaticity-based approach are susceptible to noise,furthermore it is sensitive to illumination changes.Texture-based approach is highly distinctive,do not depend on colors and robust to illumination changes.In terms of the disadvantage of above approaches,a new improved ViBe algorithm combined with multiple features fusion,fusing chromaticity and texture is proposed in this paper.The initialization model would be initialized by Gaussian distribution probability function and updated according to original ViBe update algorithm in the proposed approach,next fusing the chromaticity feature and texture feature to remove the shadow.Experimental results show the proposed approach can detect the moving vehicles as well as remove the ghost effectively,and it is efficient and robust in shadow removing under different scenes.
作者 甘玲 赵华翔
出处 《微电子学与计算机》 CSCD 北大核心 2015年第11期152-157,共6页 Microelectronics & Computer
基金 国家自然基金项目(61272195)
关键词 阴影检测 阴影移除 改进的ViBe算法 色相特征 纹理特征 Shadow detection Shadow elimination Improvec ViBe algorithm Chromaticity feature Texture feature
  • 相关文献

参考文献11

  • 1Andres Sanin, Conrad Sanderson, Brian C Ix)veil. A survey and comparative evaluation of recent methods J]. Pattern Recognition, 2012, 45(4): 1684-1695.
  • 2Cucchiara R, Grana C, Piccardi M, et al. Detecting moving objects , ghosts , and shadows in video streams [J]. IEEE Trans on Pattern Analysis and Machine In- telligence, 2003, 25(4).. 8-12.
  • 3Nadimi S, Bhanu B. Physical models for moving shad- ow and object detection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26 (6) .. 118- 123.
  • 4Chia-Jung Chang, Wen-Fong Hu, Hsieh Jun-Wei, et al. Shadow elimination for effective moving object de- tection with Gaussian models[C]// Proc the 16th lnfl Conf on Pattern Recognition. Fs. 1.3: IEEE, 2002: 540-543.
  • 5Sanin A, Sanderson C, Lovell B C. Improved shadow removal for robust person tracking in surveillance see- narios[C]// Proc the 20th Int'l Conf on Pattern Rec- ognition. Istanbul:IEEE,2010: 141-144.
  • 6Horn B K P, Schunck B G. Determining optical flow [J]. Artificial Intelligence, 1981,17(1-3).. 185-203.
  • 7Neri A, Colonnese S, Russo G,et al. Automatic mov- ing object and background separation[J]. Signal Pro- cessing, 1998,66(2) :219-232.
  • 8Hu J S,Su T M. Robust background subtraction with shadow and highlight removal for indoor surveillance[J]. EURASIP Journal on Advances in Signal Proces- siong, 2007, 14(1).. 191-197.
  • 9OliverBarnieh, Marc Van Droogenbroeck. ViBe: a uni- versal background substraetion algorithm for video se- quences[J]. IEEE Transactions on Image Processing, 2011, 20(6) : 88-94.
  • 10杨勇,孙明伟,金裕成.一种改进视觉背景提取(ViBe)算法的车辆检测方法[J].重庆邮电大学学报(自然科学版),2014,26(3):397-403. 被引量:10

二级参考文献1

共引文献9

同被引文献46

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部