期刊文献+

卡盘转速及喷淋臂摆动方式对晶片腐蚀性能的影响

Effects of Chuck Rotation Speed and Dispensing Arm Swing Mode on the Etching Properties of Silicon Wafer
下载PDF
导出
摘要 随着晶片尺寸的不断增大,精准控制单片湿法腐蚀速率及非均匀性变得越来越具有挑战性。主要研究了300 mm单片湿法腐蚀工艺过程中,喷射稀释氢氟酸时卡盘的旋转速度和喷淋臂摆动方式对晶片表面腐蚀性的影响。结果表明,随着卡盘旋转速度的增大,腐蚀速率从1.02 nm/min线性提高到1.06 nm/min,腐蚀速率的非均匀性先是迅速降低,但当转速高于150 r/min后,基本保持在2.70%。喷淋臂在晶片中心定点喷射、匀速摆动和呈抛物线型摆动时,晶片腐蚀速率都约为1 nm/min,腐蚀速率均沿晶片中心到边缘径向降低,与定点喷射相比,喷淋臂在晶片表面摆动后,腐蚀速率的非均匀性明显降低,且抛物线摆动低于匀速摆动,达到1.48%。 With the increasing of the wafer size,it becomes more and more challenging to control the etching rate and non-uniformity exactly. During the process of 300 mm single wet etching, the effects of chuck rotation speed and arm swing modes during dispensing of dilute hydrogen fluoride on the etching properties of silicon wafer were investigated. The results show that with the increase of the chuck rotation speed,the etching rate linearly increases from 1. 02 nm/min to 1. 06 nm/min,and the non-uniformity of the etching rate first decreases and then becomes stable at 2. 70% when the chuck rotation speed is above 150 r/min. The etching rates are all about 1 nm/min with the arm motion of fixed in middle and swing with the uniform velocity and parabola type,and gradually decrease from center to edge of the silicon wafer. Compared with fixed in middle,the non-uniformity of the etching rate is obviously decreased after the arm swing on the silicon wafer surface,and when the arm swing with parabola type lower than that with uniform velocity,the non-uniformity of the etching rate reaches 1. 48%.
出处 《半导体技术》 CAS CSCD 北大核心 2015年第11期861-865,871,共6页 Semiconductor Technology
基金 国家科技重大专项02专项资助项目(2013ZX02103)
关键词 单片湿法腐蚀 卡盘转速 喷淋臂摆动方式 腐蚀速率 腐蚀非均匀性 single wafer wet etching chuck rotation speed dispensing arm swing mode etching rate etching non-uniformity
  • 相关文献

参考文献12

  • 1CHOI G M. Necessity of cleaning and its application in future memory devices [ J ]. Solid State Phenomenal, 2014, 219: 3-10.
  • 2OGAWA Y. Cleaning technology for advanced devices beyond 20 nm node [ J ]. Solid State Phenomenal, 2013, 195: 7-12.
  • 3CHENG W T, TERAMOTO A, OHMI T. Very high performance CMOS on Si (551) using radical oxidation technology and accumulation-mode SOI device structure [ J]. Journal of the Electrochemical Society, 2010, 157 (3) : H389-H393.
  • 4LEE H H, AHN D M, LIM ST, et al. Effect ofdi-wa- ter dilution and etchant arm movement on spinning type wet etch [J]. Solid State Phenomenal, 2015, 219: 125-127.
  • 5YU B, HUANG S, YEH M, et al. Novel wet etching of silicon nitride in a single wafer spin processor [ J]. Solid State Phenomenal, 2013, 195: 46-49.
  • 6YU B, KU F, TAFT C, et al. Challenges and solutions for 450 mm FEOL wet clean tool [ J]. ECS Transac- tions, 2013, 58 (6):87-92.
  • 7KNOTTER D M. Etching mechanism of vitreous silicon dioxide in HF-based solutions [ J]. Journal of the Ameri- can Chemistry Society, 2000, 122 (18) : 4345-4351.
  • 8HABUKA H, MIZUNO K, OHASHI S, et al. Surface chemical reaction model of silicon dioxide film etching by dilute hydrogen fluoride using a single wafer wet etcher [ J ]. Journal of Solid State Science and Technology, 2013, 2 (6): 264-267.
  • 9HABUKA H, OHASHI S, KINOSHITA T. Numerical calculation model of a single wafer wet etcher using a swinging nozzle [ J]. Material Science in Semiconductor Processing, 2012, 15 (5): 543-548.
  • 10JUDGE J S. A study of the dissolution of SiO2 in acidic fluoride solutions [ J ]. Journal of the Electrochemical Society, 1970, 118 (11): 1772-1775.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部