期刊文献+

融合细节与整体特征的三维模型检索方法 被引量:3

A New 3D Model Retrieval Method Combining Local and Global Features
下载PDF
导出
摘要 三维模型检索技术能有效提高三维模型的复用率和共享率.为了提高三维模型检索结果的准确率,提出一种融合细节与整体特征的三维模型检索方法,通过SIFT特征和傅立叶描述子特征来对三维模型进行特征描述.分别利用这2种特征来对三维模型进行相似度度量,再通过加权求和的方式对这2种特征进行融合.通过融合这2种特征可以达到同时兼顾三维模型的整体形状特征和局部细节特征,实验证明该方法能提高三维模型检索结果的准确率. With the rapid increase of 3D models,the 3D model retrieval methods have attracted significant attention.To improve the accuracy of the retrieval result,we propose a new 3Dmodel retrieval method in this paper.Our approach selects the SIFT feature and the Fourier descriptor feature to represent a 3D model.Then we utilize the two different features to calculate the similarity between the query model and the models in the database respectively.Finally,the features are integrated via the linear combination of the distance values they produced using adaptive weights.Experiment results show that our method can improve the accuracy of the retrieval result.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第10期131-137,共7页 Journal of Southwest University(Natural Science Edition)
基金 中央高校基本科研业务费专项资金(XDJK2015C110) 教育部"春晖计划"资助项目(z2011149)
关键词 三维模型检索 傅立叶描述子特征 SIFT特征 特征融合 3D model retrieval Fourier descriptor feature SIFT feature feature fusion
  • 相关文献

参考文献12

  • 1CHEN D Y, TIAN X P, SHEN Y T, et al. On Visual Similarity Based 3D Model Retrieval. [J]. Computer Graphics Fo- rum, 2003, 22(3): 223-232.
  • 2PAPADAKIS P, PRATIKAKIS I, THEOHARIS T, et al. Panorama~ A 3D Shape Descriptor Based on Panoramic Views for Unsupervised 3D Object Retrieval [J]. International Journal of Computer Vision, 2010, 89(2/3).. 177-192.
  • 3毛瑞,唐雁,陈强,甘圆超.基于分割理论的三维模型检索算法[J].西南师范大学学报(自然科学版),2012,37(6):125-129. 被引量:1
  • 4LI B, JOHAN H. 3D Model Retrieval Using Hybrid Features and Class Information [J]. Multimedia Tools ~- Applica- tions, 2013, 62(3): 821-846.
  • 5OSADA R, FUNKHOUSER T, CHAZELLE B, et al. Shape Distributions [J~. ACM Transactions on Graphics (TOG), 2002, 21(4), 807-832.
  • 6PAN X, YOU Q, LIU Z, et al. 3D Shape Retrieval by Poisson Histogram I-J]. Pattern Recognition Letters, 2011, 32(6) : 787-794.
  • 7CHEN Q, YU Y M. 3D CAD Model Retrieval Based On Feature Fusion [J~. Advanced Materials Research, 2013, 765: 316-319.
  • 8甘圆超,唐雁,陈强,张清辰,毛瑞.基于形状加权的三维模型特征提取算法[J].西南师范大学学报(自然科学版),2012,37(5):85-88. 被引量:3
  • 9LOWED G. Distinctive Image Features from Scale-Invariant Keypoints rJ]. International Journal of Computer Vision,2004, 60(2).. 91-110.
  • 10LI B, GODIL A, AONO M, et al. SHREC'12 Track.. Generic 3D Shape Retrieval [-J~. Eurographics Workshop on 3D Object Retrieval, 2012, 5: 119-126.

二级参考文献22

共引文献2

同被引文献19

  • 1C0OTES T F, TAYLOR C J, COOPER D, et al. Active Shape Models-Their Training and Application [J].Computer Vision and Image Understanding, 1995, 61(1): 38--59.
  • 2BLAKE A, ISARD M. Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Sta- tistics to Visual Tracking of Shapes in Motion[J]. Language Speech and Hearing Services in Schools, 1998, 11(3): 32O -- 323.
  • 3BELONGIE S, MALIK J, PUZICHA J. Shape Matching and Object Recognition Using Shape Contexts [J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 24(4) : 509--522.
  • 4WANG Y, TEOH E K. A Novel 2D Shape Matching Algorithm Based on B-Spline Modeling [C]// International Con- ference on Image Processing. Singapore: IEEE Signal Processing Society, 2004: 409--412.
  • 5BERNARD O, FRIBOULET D, THVENAZ P, et al. Variational B-Spline Level-Set: A IAnear Filtering Approach for Fast Deformable Model Evolution[J]. IEEE Transactions on Image Processing, 2009, 18(6): 724--731.
  • 6LAUER F, SUEN C Y, BLOCH G. A Trainable Feature Extractor for Handwritten Digit Recognition [J]. Pattern Rec- ognition, 2007, 40(6): 1816--1824.
  • 7RANZATO M, HUANC, F J, BOUREAU Y L, et al. Unsupervised Learning of Invariant Feature Hierarchies with Ap- plications to Object Recognition [C] //Published in Computer Vision and Pattern Recognition. Minneapolis, USA: IEEEComputer Society, 2007: 1--8.
  • 8JARRETT K, KAVUKCUOGLU K, RANZATO M, et al. What is the Best Multi-Stage Architecture for Object Recog- nition[C]//Published in International Conference on Computer Vision. Kyoto, Japan: IEEE Computer Society, 2009.. 2146--2153.
  • 9DAN C, MEIER U, MASCI J, et al. Multi-Column Deep Neural Network for Traffic Sign Classification[J].Neural Networks, 2012, 32(1): 333--338.
  • 10HONG B W, SOATTO S. Shape Matching Using Multiscale Integral Invariants [J].IEEE Transactions on Pattern Anal- ysis ~ Machine Intelligence, 2015, 37(1): 151--160.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部