摘要
提出一种新的紧密度公式和一种影响簇发现模型,并在此基础上设计基于局部社团探测的采样算法MCMCS_LCD,以及基于MCMCS_LCD的社交圈子自动识别算法SCD_MCMCS_LCD,算法综合考虑局部模块度和节点间紧密度.在真实数据集上的实验表明,SCD_MCMCS_LCD算法在具有较快收敛速度的同时还具有较好的社交圈子识别效果.
This paper proposes a new expression of the close affinities and the influential cluster selec -tion model, and on this basis to design an efficient sampler algorithm , called MCMCS_LCD, and fur-ther design an automatic detection method called SCD_MCMCS_LCD.The algorithm takes account in-to both local modularity M and close affinities .Experiments demonstrate that SCD_MCMCS_LCD has a faster convergence speed while still maintains a good social circle recognition effect .
出处
《福州大学学报(自然科学版)》
CAS
北大核心
2015年第5期604-611,共8页
Journal of Fuzhou University(Natural Science Edition)
基金
国家自然科学基金资助项目(61300104)
福建省自然科学基金资助项目(2013J01230)