期刊文献+

面向卫星总体设计的典型设计意图树提取方法

Extracting Method of Typical Design Intention Tree in Satellite Overall Design
下载PDF
导出
摘要 针对卫星设计意图分解过程中存在重视分解结果,轻视分解过程的现象,提出基于元意图链的典型设计意图树提取方法。首先,在定义相关概念的基础上,通过逆向推理和均值法得到设计意图的典型元意图链;然后,通过Apriori算法提取出典型元意图组合并将其融合成典型设计意图树;最后,通过实例验证说明了该方法的有效性。 The extracting method of typical design intention tree based on element intention chain is presented for the phenomenon that the designers only focus on the decomposition results but ignore the decomposition process in the design intention decomposition process of satellite. Firstly, on the basis of defining related concepts, by reverse reasoning and average method, a typical intention chain of the design intent is gotten. Secondly, by Apriori algorithm, a typical intention group is extracted, and it is integrated into a typical design intention tree. Finally, the example shows that the method is effective.
出处 《航天制造技术》 2015年第5期60-64,共5页 Aerospace Manufacturing Technology
基金 国家科技支撑计划项目(2014BAF07B0) 国家自然科学基金资助项目(51205321) 陕西省自然科学基金(2014JM9367) 中央高校基本科研业务费专项资金资助项目(3102014KYJD038)
关键词 设计过程 元意图链 典型元意图链 典型设计意图树 design process element intention chain typical intention chain typical design intention tree
  • 相关文献

参考文献5

二级参考文献32

  • 1徐章艳,刘美玲,张师超,卢景丽,区玉明.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. 被引量:71
  • 2Rakesh Agrawal, Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. VLDB1994, Santiago,Chile, 1994.
  • 3Heikki Mannila, et al. Search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery,1997, 1(3): 241~258.
  • 4Jong Soo Park, et al. An effective Hash based algorithm for mining association rules. SIGMOD1995, San Jose, USA, 1995.
  • 5Sergey Brin, et al. Dynamic itemset counting and implication rules for market basket data. SIGMOD1997, Tucson, USA,1997.
  • 6Ramesh C. Agarwal, et al. Depth first generation of long patterns, KDD 2000, Boston, USA, 2000.
  • 7Ramesh C. Agarwal, et al. A tree projection algorithm for generation of frequent itemsets. J. of Parallel and Distributed Computing, 2001, 61(3): 350~371.
  • 8Jiawei Han, Jian Pei, Yiwen Yin. Mining frequent patterns without candidate generation. SIGMOD2000, Dallas, USA, 2000.
  • 9J. Pei, et al.. H-Mine: Hyper-structure mining of frequent patterns in large databases. ICDM'01, San Jose, CA, 2001.
  • 10Mike Perkowitz, Oren Etzioni. Adaptive sites: Automatically learning from user access patterns. WWW' 97, Santa Clara, 1997.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部