期刊文献+

栅格地理数据并行格式转换引擎 被引量:1

Parallel geo-raster data conversion engine
下载PDF
导出
摘要 如今大规模地理数据正在社会各个部门和组织中迅速积累,但是由于部门利益和历史沿袭等原因,大规模地理数据共享仍然极具挑战,相应共享技术需求仍然极其旺盛。作为地理数据共享的基础方式之一,传统单机地理数据格式转换技术,一方面受限于磁盘读写及带宽瓶颈,另一方面面对日趋庞大的数据规模,已很难满足实际应用需求。因此提出一种针对栅格地理数据的并行格式转换引擎,采用高性能计算集群环境支持大规模栅格地理数据转换共享,大幅降低了大规模栅格地理数据转换过程的时间成本。栅格地理数据并行格式转换引擎采用基于公共接口的设计理念,框架灵活、具有良好的扩展性,支持地理数据格式的读写自定义以及新数据格式添加,能够实现接入数据格式间的任意两两转换。为验证引擎框架及其处理效率,在Lustre并行集群环境下以格网数据交换格式(国家地理空间数据交换格式)向常见栅格地理格式的转换为示例进行了测试实验。结果表明,栅格地理数据并行格式转换引擎能够在8个节点Lustre集群中达到7.54的良好并行加速比。 Large scale geo-raster data have been accumulated all over the world in different departments and organizations during the past decades, but quite often in a variety of data formats, resulting in geospatial data sharing as an everlasting headache. Despite of various methodologies created, geospatial data conversion has always been a fundamental and efficient way for geospatial data sharing. However, as the size of data tends to be larger and larger, the methodology which was bounded by limited disk data transfer rate and bandwidth, needs a re-write and upgrade. A parallel geo-raster data conversion engine (PGRCE) was proposed to deal with massive geo-raster data sharing efficiently by utilizing high performance computing technologies. PGRCE was designed in an extendable and flexible framework, and was capable of customizing the way of reading and writing of particular spatial data formats. An experiment, in which geo-raster data in the CNSDTF-DEM format ( Raster spatial data defined in Chinese Geospatial Data Transfer Format Standard) were transferred using PGRCE in a parallel file system ( Lustre), were conducted to validate the engine framework and its performance. Results show that PGRCE can achieve a 7.54 speedup on a Luster cluster of 8 nodes..
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2015年第5期9-14,共6页 Journal of National University of Defense Technology
基金 国家863计划资助项目(2011AA120301) 南京大学研究生科研创新基金资助项目(2013CL09)
关键词 栅格数据格式转换 并行计算 高性能计算 地理计算 Lustre并行文件系统 geo-raster data format conversion parallel computing high performance computing geocomputation Lustre cluster
  • 相关文献

参考文献7

二级参考文献247

  • 1杨涛,刘锦德.Web Services技术综述——一种面向服务的分布式计算模式[J].计算机应用,2004,24(8):1-4. 被引量:94
  • 2宁焕生,张瑜,刘芳丽,刘文明,渠慎丰.中国物联网信息服务系统研究[J].电子学报,2006,34(B12):2514-2517. 被引量:151
  • 3J Dean,S Ghemawat.MapReduce:Simplified data processing on large clusters[J].Communications of the ACM,2008,51(1):107-113.
  • 4J L Wagener.High performance fortran[J].Computer Standards & Interfaces,Elsevier,1996,18(4):371-377.
  • 5W Gropp,E Lusk,et al.Using MPI:Portable Parallel Programming with the Message Passing Interface[M].Cambridge:MIT Press,1999.1-350.
  • 6A Geist,A Beguelin,et al.PVM:Parallel Virtual Machine:A Users' Guide and Tutorial for Networked Parallel Computing[M].Cambridge:MIT Press,1995.1-299.
  • 7A Verma,N Zea,et al.Breaking the mapreduce stage barrier .Proc of IEEE International Conference on Cluster Computing .Los Alamitos:IEEE Computer Society,2010.235-244.
  • 8H C Yang,A Dasdan,et al.Map-Reduce-Merge:Simplified relational data processing .Proc of ACM SIGMOD International Conference on Management of Data .New York:ACM,2007.1029-1040.
  • 9S V Valvag,D Johansen.Oivos:Simple and efficient distributed data processing .Proc of IEEE International Conference on High Performance Computing and Communications .Piscataway:IEEE,2008.113-122.
  • 10Z Vrba,P Halvorsen,et al.Kahn process networks are a flexible alternative to mapreduce .Proc of IEEE International Conference on High Performance Computing and Communications .Piscataway:IEEE,2009.154-162.

共引文献2674

同被引文献9

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部