期刊文献+

单像自标定的迭代优化方法 被引量:1

Iterative optimization for camera self-calibration from a single image
下载PDF
导出
摘要 针对基于灭点的单像自标定方法精度不高的局限性,利用影像中的灭点和椭圆几何约束信息,提出一种迭代优化的单像自标定方法。根据极点-极线关系及其表示的正交性,由影像中的椭圆曲线及其所在平面的灭线确定一组正交共轭灭点对。利用这些正交共轭灭点对建立关于主距和主点的非线性模型,以主距的方差最小作为优化准则,并选用多个位置作为主点的初始值进行多次迭代优化估计,获得主距和主点的最优结果。仿真影像和真实影像实验结果表明,该方法能够有效地实现单像自标定。与基于灭点的摄像机标定方法相比,该方法能够获得更为满意的标定结果。 The camera calibration from vanishing points is easily distracted by noise in the image, leading to inaccurate results which are often inadmissible for camera calibration. To overcome the limitation, an iterative optimization approach, which makes full use of geometric constraints of vanishing points and ellipse in the image, was presented for self-calibration from single image. According to the pole-polar relationship and the orthogonality represented by it, a set of orthogonal conjugate vanishing point pairs were calculated through using the ellipse curve and the coplanar vanishing line. A nonlinear model of the principle distance and principle point was established on the basis of these vanishing point pairs. Choosing the minimum variance of principle distances as optimization criterion and setting multiple points as the initial values of the principle point, the principle distance and principle point were iteratively optimized and their optimal results were obtained. Simulated results and real data show that the approach can effectively realize camera self-calibration from a single image. Compared with the camera calibration method using vanishing points, the approach achieves more satisfactory calibration results.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2015年第5期29-34,共6页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(41401442) "十二五"国家支撑计划资助项目(2012BAH35B02) 江苏省普通高校研究生科研创新计划资助项目(KYLX15_0748)
关键词 摄像机标定 灭点 椭圆 迭代优化 camera calibration vanishing points ellipse iterative optimization
  • 相关文献

参考文献19

  • 1Abdel-Aziz Y I, Karara H M. Direct linear transformation from comparator coordinates into object space coordinate in close-range photogrammetry[ C ] //Proceedings of Symposium on Close-Range PhotogTammetry, Falls Church, VA : American Society of Photoga'ammetry, 1971, 1:1 - 18.
  • 2邱志强,唐力铁,于起峰.用神经网络变易有效焦距的摄像机标定法[J].国防科技大学学报,2002,24(5):16-19. 被引量:7
  • 3唐力铁,邱志强,陆启生.基于仿射近似的摄像机标定[J].国防科技大学学报,2006,28(1):111-116. 被引量:2
  • 4Tsai R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses [ J ]. IEEE Journal of Robotics and Automation, 1987, 3(4) : 323 -344.
  • 5Zhang Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 ( 11 ) : 1330 - 1334.
  • 6Hardy R, Zisserman A. Multiple view geometry in computer vision[ M]. USA: Cambridge University Press, 2000.
  • 7Caprile B, Torte V. Using vanishing points for camera calibration [ J ]. International Journal of Computer Vision, 1990, 4(2) :127 - 139.
  • 8Guillou E, Meneveaux D, Maisel E, et al. Using vanishing points for camera calibration and coarse 3D reconstruction from a single image [ J ]. The Visual Computer, 2000, 16(7) : 396 -410.
  • 9Chen Q, Wu H Y, Wada T. Camera calibration with two arbitrary coplanar circles[ C] //Proceedings of 8th European Conference on Computer Vision, Prague, Czech Republic: Springer Berlin Heidelberg, 2004, 3023:521 -532:.
  • 10Colombo C, Comanducci D, Del Bimbo A. Camera calibration with two arbitrary coaxial circles [ C ] // Proceedings of 9th European Conference on Computer Vision, Graz, Austria: Springer Berlin Heidelberg, 2006, 3951: 265 - 276.

二级参考文献24

  • 1刘宏建,罗毅,刘允才.可变精度的神经网络摄像机标定法[J].光学精密工程,2004,12(4):443-448. 被引量:13
  • 2李为民,俞巧云,刘超.采用分离式差分标定靶的单摄像机标定方法[J].光学学报,2006,26(5):697-701. 被引量:26
  • 3於宗俦 鲁林成.测量平差基础[M].北京:测绘出版社,1982..
  • 4高文 陈熙霖.计算机视觉--算法与系统原理[M].清华大学出版社,广西科学技术出版社,1998..
  • 5Roger Y. Tsai. A versatile camera calibration technique for high- accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE J. Robot. Autom. , 1987, 3(4): 323-344.
  • 6O. D. Faugeras, Q. T. Luong, S. J. Maybank. Camera sell calibration: theory and experiments[C]. Proc. the 2nd European Conference on Computer Vision Berlin: Springer, 1992, 588:321-334.
  • 7S. Maybank, O. D. Faugeras. A theory of self-calibration of a moving camera[J]. Int. J. Comput. Vision, 1992, 8(2): 123-151.
  • 8R. Hartley. Self-calibration of stationary cameras[J]. Int. J. Cornput. Vision, 1997, 22(1): 5-23.
  • 9Songde Ma. A self-calibration technique for active vision systems [J]. IEEE T. Robot. Aurora. , 1996, 12(1): 114-120.
  • 10X. Q. Meng, H. Li, Z. Y. Hu. A new easy camera calibration technique based on circular ooints[C]. Proc. the British Machine Vision Conference, Bristol: ILES Central Press, 2000, 496- 501.

共引文献98

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部