期刊文献+

最大值指标截尾正态分布精度换算方法 被引量:3

Precision conversion methodology with truncated normal distribution theory assumption oriented to maximum-error specification
下载PDF
导出
摘要 提出了面向最大值指标的截尾正态分布精度换算方法,为最大值指标与常用精度指标间的精度换算以及真值测量系统精度指标的确定提供了参考依据。该方法假设系统输出序列中各观测点的合格概率服从对数截尾正态分布;根据给定最大值指标的置信水平及序列样本量,证明并推导了截尾正态分布之截尾上限、截尾下限、均值及标准偏差的计算公式,导出了最大值精度指标与1σ等常用精度指标间的换算关系;结合精密仪器有关理论给出了最大值指标下真值测量系统精度指标的确定方法。实例应用的实验结果表明,该方法是可行的。 A precision conversion methodology with truncated normal distribution theory assumption oriented to maximum-error specification was brought forward, and it could be taken as a reference frame for the precision conversion between maximum-error specification and other precision measurement specifications, so that the precision class of according true value measurement systems could be determined in advance. The method assumes that the conformity probability of the observation sequence is subjected to logarithmic truncated normal distribution ; based on the aimed confidence level for maximum-error specification and the given sample size of target sequence, the calculation formulation of upper truncated limit, lower truncated limit, mean and standard deviation of the truncated normal distribution were proved and derived, thus the precision conversion relationships between maximum-error specification and other precision measurement specifications, such as 1 tr, were turned out; through referring to the corresponding theories on precision instrument fields, the determination methodology for precision class of true value measurement systems under maximum-error specification was given. The application on related example eases proved the feasibility of the proposed method.
作者 韩旭 孙翱
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2015年第5期110-115,共6页 Journal of National University of Defense Technology
基金 教育部博士点新教师基金资助项目(200802881012)
关键词 精度换算 截尾正态分布 最大值指标 precision conversion truncated normal distribution maximum-error specification
  • 相关文献

参考文献14

  • 1韩旭,王建宇,祖先锋.基于时间序列模型的系统最大值指标评定方法[J].系统工程与电子技术,2012,34(4):839-845. 被引量:7
  • 2韩旭,王建宇,祖先锋.基于极值理论的系统最大值指标评定方法[J].系统工程与电子技术,2012,34(5):1073-1084. 被引量:4
  • 3Abualkishik A Z, Desharnais J M, Khelifi A, et al. An exploratory study on the accuracy of FPA to COSMIC measurement method conversion types [ J ]. Information and Software Technology, 2012, 54(11) : 1250 -1264.
  • 4Zhang L, V6zquez C, Knorr S. 3D-TV content creation: automatic 2D-to-3D video conversion [ J]. IEEE Transactions on Broadcasting, 2011, 57(2) : 372 -383.
  • 5Vosters L, de Haan G. Efficient and stable sparse-to-dense conversion for automatic 2-D to 3-D conversion [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(3) : 373 -386.
  • 6Yedlin M, Vorst D V, Virieux J. Uniform asymptotic conversion of Helmholtz data from 3D to 2D [ J]. Journal of Applied Geophysics, 2012, 78 : 2 - 8.
  • 7Liu Z G, Du S Y, Yang Y, et al. A fast algorithm for color space conversioa and rounding error analysis based on fixed- point digital signal processors [ J ]. Computers and Electrical Engineering, 2014, 40(4) :1405 - 1414.
  • 8Menard D, Rocher R, Sentieys O. Analytical fixed-point accuracy evaluation in linear time-invariant systems [ J ]. IEEE Transactions on Circuits and Systems, 2008, 55 ( 10 ) : 3197 - 3208.
  • 9Coogle R A, Smith D, Blair W D. Debiased coordinate conversion of bistatic radar measurements [ C ]//ProcEedings of IEEE National Radar Conference on Ubiquitous Radar, Atlanta, GA, United States, 2012:383 - 388.
  • 10Zhang R F, Zhang X M, Qin G X, et al. Novel three- dimensional data conversion technique and profile measurement system for engine cylinder head blank [ J ]. Optics & Laser Technology, 2013, 45 : 697 -701.

二级参考文献22

  • 1Cooley D. Extreme value analysis and the study of climate change: a commentary on Wigley 1988[J]. Climate Change, 2009,97(1 - 2) :77 - 83.
  • 2Minguez R, Mendez F J, zaguirre C, et al. Pseudo-optimal pa- rameter selection of non-stationary generalized extreme value models for environmental variables[J]. Environmental Model- ling & Software ,2010,25(12) :1592 - 1607.
  • 3Chen H, Cummins J D. Longevity bond premiums: the extreme value approach and risk cubic pricing[J]. Insurance: Mathemat its and Economics ,2010,46(1) :150 - 161.
  • 4Kogana V, Rind T. Determining critical power equipment inventory using extreme value approach and an auxiliary Poisson model [J]. Computers & Industrial Engineering ,2011,60(1) :25 - 33.
  • 5Prasannavenkatesan R, Przybyla C P, Salajegheh N, et al. Sim- ulated extreme value fatigue sensitivity to inclusions and pores in martensitic gear steels [J]. Engineering Fracture Mechanics, 2011,78(6) :140 - 155.
  • 6Reiss R D, Thomas M. Statistical analysis of extreme values with applications to insurance, finance, hydrology and other fields[M]. 3rd ed. Berlin: Birkhauser Verlag,2007.
  • 7Albert M G, Tank K, Zwiers F W, et al. C-uidelineson analysis of extremes in a changing climate in support of informed decisions for adaptation[M]. Geneva: World Meteorological Organization,2009.
  • 8Ruggiero P, Komar P D, Allan J C. Increasing wave heights and extreme value projections: the wave climate of the U.S. Pacific Northwest[J]. Coastal Engineering, 2010,57(5) : 539 - 552.
  • 9Khaliq M N, Ouarda T B M J, Ondo J C, et al. Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review [J]. Journal of Hydrology,2006,329(3 - 4) :534 - 552.
  • 10Shrivastava U, Dawar G, Dhingra S, et al. Extreme value analysis for record loss prediction during volatile market[J]. Management Science and Engineering ,2011,5(1) : 19 - 25.

共引文献7

同被引文献32

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部