期刊文献+

一类具有时滞和随机项的捕食-被捕食模型 被引量:6

A Stochastic with Delayed Predator-prey Model
下载PDF
导出
摘要 将环境中的白噪声和时滞考虑到含有Crowley-Martin型功能反应函数的种群系统中,得到了一类具有时滞和随机项的捕食-被捕食模型。本文利用Lyapunov函数和It公式得到模型的正均衡态必须满足某个条件才是全局渐近稳定的,而且常数时滞和一定范围内的白噪声对均衡解的全局渐近稳定性影响不大。 The white noise and delay time of environment was added to the population system with CrowleyMartin functional response. A stochastic with delayed predator-prey system was got. The equilibrium system under certain conditions obtained by using Lyapunov function and It formular is globally asymptotically stable.And the constant delay and white noise within certain range have little effect on the global asymptotic stability of the equilibrium solution.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2015年第6期75-81,9,共7页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(11471034 61174209) 北京科技大学冶金工程研究院基础研究基金项目(YJ2012-001)
关键词 Crowley-Martin功能函数 时滞 高斯白噪声 Crowley-Martin functional time-delay Gauss white noise
  • 相关文献

参考文献12

  • 1Meng X Y, Huo H F,Xiang H. Stability in a Predator-prey Model with Crowley-Martin Function and Stage Structure for Prey[ J]. Applied Mathematics and Computation,2014,232:810 - 819.
  • 2Yin H W, Xiao X Y, Wen X Q. Pattern Analysis of a Modified Leslie-Gower Predator-prey Model with Rowley-Martin Functional Response and Diffusion[ J]. Applied Mathematics and Computation,2014,67 :t607 -1621.
  • 3Jovanovi M, Vasilova M. Dynamics of Non-autonomous Stochastic Gilpin-Ayala Competition Model with Time-varying Delays [ J]. Mathematics and Computation ,2013,219:6946 - 6964.
  • 4Qiu H, Liu M, Wang K, et al. Dynamics of a Stochastic Predator Prey System with Beddington-DeAngelis Functional Response[ J]. Mathematics and Computation,2012,219:2303 - 2312.
  • 5Liu Q,Liu Y L,Xue P. Global Stability of a Stochastic Predator-prey System with Infinite Delays[ J]. Applied Mathematics and Computation ,2014,235 : 1 - 7.
  • 6Liu X Q,Zhong S M,Tian B D. Asymptotic Properties of a Stochastic Predator Prey Model with Crowley-Martin Functional Response [ J ]. Applied Mathematics and Computation ,2013,43 ( 2 ) :479 - 490.
  • 7Gy~ngy I, Sabanis S. A Note on Euler Approximations for Stochastic Differential Equations with Delay [ J ]. Applied Mathematics & Optimization ,2013,68 ( 3 ) :391 - 412.
  • 8Liu M, Qiu H, Wang K. A Remark on a Stochastic Predator-prey System with Time Delays [ J]. Applied Mathematics Letters, 2013,26 ( 3 ) : 318 - 323.
  • 9Liu M, Wang K. Stochastic Lotka-Voherra Systems with L6vy Noise [ J ]. Applied Mathematics and Computation,2014,410 (2) :750 -763.
  • 10Liu M, Bai C Z. Global Asymptotic Stability of a Stochastic Delayed Predator-prey Model with Beddington-DeAngelis Functional Response [ J ]. Applied Mathematics and Computation ,2014,226:581 - 588.

同被引文献24

  • 1刘一戎,李继彬.论复自治微分系统的奇点量[J].中国科学(A辑),1989,20(3):245-255. 被引量:94
  • 2杜超雄,刘一戎,米黑龙.一类三次Kolmogorov系统的极限环分支[J].工程数学学报,2007,24(4):746-752. 被引量:7
  • 3LLOYD N G, PEARSON J M,SAEZ E. Limit cycles of a cubic Kolmogorov system[ J ]. Applied mathematics letters, 1996, 9(1) :15 - 18.
  • 4LLOYD N G, PEARSON J M, SAEZ E, et al. A cubic Kolmogorov system with six limit cycles [ J ]. Computers and mathematics with applications ,2002,44 ( 3/4 ) :445 - 455.
  • 5DU C X, WANG Q L, HUANG W T. Three-dimensional Hopf bifurcation for a class of cubic Kolmogorov model [ J ]. International journal of bifurcation and chaos ,2014,24 ( 3 ) : 1450036.
  • 6DU C X,LIU Y R,ZHANG Q. Limit cycles in a class of quartic Kolmogorov model with three positive equilibrium points [ J ]. International journal of bifurcation and chaos ,2015,25 ( 6 ) : 1550050.
  • 7HUANG W T, CHEN A Y, XU Q J. Bifurcation of limit cycles and isochronous centers for a quartic system [ J]. International journal of bifurcation and chaos,2013,23(10) :255 -259.
  • 8LIU Y R, LI J B. New study on the center problem and bifurcations of limit cycles for the Lyapunov system [ J ]. International journal of bifurcation and chaos,2009,19 ( 9 ) :3791 - 3801.
  • 9郭书东,张启敏.跳扩散种群系统的数值解[J].河南科技大学学报(自然科学版),2009,30(5):89-92. 被引量:1
  • 10朱恩文,徐勇,俞政.一个带白噪声的可变时滞Lotka-Volterra人口模型(英文)[J].生物数学学报,2010,25(2):193-201. 被引量:1

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部