期刊文献+

二元复合重心型混合有理插值 被引量:1

Bivariate Composite Barycentric Blending Rational Interpolation
下载PDF
导出
摘要 Schneider和Werner提出的重心有理插值比Thiele型连分式有理插值计算量小,数值稳定性好,选择适当的权可以不出现极点和不可达点。本文研究矩形域上的二元复合重心型混合有理插值新方法。首先在小矩形域上构造二元Newton插值多项式,然后通过复合重心有理插值,构造出了二元复合重心型混合有理插值,证明了二元复合重心型混合有理插值无极点和不可达点,最后给出的数值例子验证了新方法的有效性。 Barycentric rational interpolant was constructed by Schneider and Werner,which has small calculation quantity,good numerical stability in comparison with Thiele-type continued fraction rational interpolant.Moreover,poles and unattainable points are prevented when choosing the appropriate weights.In this paper,the new method of bivariate composite barycentric blending rational interpolation in rectangular domain is studied.Firstly,bivariate Newton interpolation polynomial is constructed in a small rectangular domain.Then,bivariate composite barycentric blending rational interpolation is constructed by means of composite barycentric rational interpolation and some interpolation properties are proved,such as bivariate composite barycentric blending rational interpolant has no poles and unattainable points.Finally,a numerical example is given to show the effectiveness of the new method.
出处 《皖西学院学报》 2015年第5期21-24,共4页 Journal of West Anhui University
基金 国家自然科学基金(60973050) 安徽省教育厅自然科学基金项目(KJ2009A50)资助
关键词 二元Newton插值多项式 重心有理插值 复合 极点 不可达点 Bivariate Newton interpolation polynomial barycentric rational interpolation composite poles unattainable points
  • 相关文献

参考文献13

  • 1Michael S. Floater, KaiHormann. Barycentric Rational In- terpolation with No Poles and High Rates of Approxima- tion. Numer. Math. , 2007,107 : 315-331.
  • 2Georges Klein, An Extension of the Floater-Hormann Family of Barycentric Rational Interpolants. Mathematics of Computation, 2013,82(284),2273-2292.
  • 3Gasca M, Sauer T. On the History of Multivariate Poly- nomial Interpolation [J]. Comput. Appl. Math. , 2000,122 23-35.
  • 4Berrut J.-P. , Trefethen L N. , Barycentric Lagrange In- terpolation, SIAM. Rev. , 2004,46.. 501-517.
  • 5Schneider C. ,Werner W. , Some New Aspects of Rational Interpolation. Math. Comp., 1986,175(47): 285-299.
  • 6Berrut J.-P. Mittelmann H. Matrices for the Direct De- termination of the Barycentric Weights of Rational Interpo- lation. J. Comput. Appl. Math. , 1997,78 : 355-370.
  • 7Jesus M. Carnicer,Weighted Interpolation for Equidistant Nodes, Numerical Algorithms, 2010, 55(2-3) : 223-232.
  • 8Schneider C., Werner W. Hermite Interpolation: The Barycentric Approach. Computing. , 1991,46 : 35-51.
  • 9Berrut J. P. , Rational Functions for Guaranteed and Ex- perimentally Well-conditioned Global Interpolation. Com- puters >- Mathematics with Applications, 1988, 15 ( 1 ) : 1-16.
  • 10L Knockaert. A Simple and Accurate Algorithm for Barycentric Rational Interpolation. Signal Processing Letters[DB/O]. IEEE, 2008(15) : 154-157.

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部