期刊文献+

二元复合重心有理插值 被引量:3

Bivariate Composite Barycentric Rational Interpolation
下载PDF
导出
摘要 Thiele型有理插值常被用来逼近带极点的函数,但是它难以避免极点和不可达点,也难以控制极点。重心有理插值方法包含极点和不可达点的信息,通过选择权可避免极点和不可达点。研究矩形域上的二元复合重心有理插值,首先对小矩形域上构造二元重心有理插值,然后基于重心复合方法构造了二元复合重心有理插值,证明了二元复合重心有理插值无极点、不可达点,最后给出的数值例子验证了新方法的逼近效果。 Thiele-type rational interpolation is often used to approximate functions with poles.But it is hard to avoid poles and unattainable points and is hard to control location of poles.The information about poles and unattainable points is included in the barycentric rational interpolant.In this paper,the new method of bivariate composite barycentric rational interpolation in rectangular domain is studied.At first,bivariate barycentric rational interpolation is constructed in a small rectangular domain.Then,bivariate composite barycentric rational interpolation is constructed based on the composite barycentric sheme and some interpolation properties are proved that such as bivariate composite barycentric rational interpolant has no poles and unattainable points.At last,numerical examples are given to show the approximating effectiveness of the new method.
出处 《皖西学院学报》 2015年第5期29-34,共6页 Journal of West Anhui University
基金 国家自然科学基金(60973050) 安徽省教育厅自然科学基金项目(KJ2009A50)资助
关键词 二元重心有理插值 复合 极点 bivariate barycentric rational interpolation composite poles weights
  • 相关文献

参考文献15

  • 1Michael S. Floater, Kai Hormann. Barycentric Rational Interpolation with No Poles and High Rates of Approxi-mation[J]. Numer. Math. 2007(107) :315-331.
  • 2Berrut J P, Mittelmann H. Matrices for the Direct Determi- nation of the Barycentric Weights of Rational Interpolation [J]. J. Comput. Appl. Math, 1997(78) ..355-370.
  • 3Berrut J. -P. The Barycentric Weights of Rational Interpo- lation with Prescribed Poles[J]. Journal of Computational and Applied Mathematics, 1997(86)..45-52.
  • 4Berrut J. P. A Matrix for Determining Lower Complexity Barycentric Representations of Rational Interpolants[J]. Numerical Algorithms, 2000,24 (1-2) .. 17-29.
  • 5Berrut J.-P. , Trefethen L N. Barycentric Lagrange Inter- polation[J]. SIAM. , 2004(46) .. 501-517.
  • 6Berrut, J.-P. , Baltensperger, R. , Mittelmann, H. D. Re- cent Developments in Barycentric Rational Interpolation. In.. deBruin,M. G. , Mache, D. H. , Szabados, J. , (eds) Trends and Applications in Constructive Approximation [J]. International Series of Numerical Mathematics, 2005 (151) :27-51.
  • 7Klein, G. , and Berrut, J.-P. Linear Barycentric Rational Quadrature[J]. BIT Numer. Math. , 52 (2012) : 407-424.
  • 8Hormann, K. , Klein, G. , De Marchi, S. et al. Barycentric Rational Interpolation at Quasi-equidistant Nodes. Dolo- mites Res. Notes Approx. ,2012(5):1-6.
  • 9Schneider C. , Werner W. , Some New Aspects of Rational Interpolation[J]. Math. Comp. , 1986,175 (47) .. 285-299.
  • 10H. T. Nguyen,A. Cuyt,O. S. Celis,Shape Control in Mul- tivariate Barycentric Rational Interpolation, Proc[J]. IC- NAAM,2010(1281) :543-548.

同被引文献25

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部