期刊文献+

一种基于变邻域搜索的启发式聚类算法 被引量:1

A Heuristic Clustering Algorithm Based on Variable Neighborhood Search
下载PDF
导出
摘要 聚类是数据挖掘的核心问题,已经成为新的研究热点。从组合优化角度描述的聚类问题是NP-难解的,因此,研究者们通常采用启发式搜索对该类问题进行求解。但是搜索空间的复杂性使得启发式聚类算法存在易受初始解等因素影响的缺点。采用变邻域搜索技术引导启发式聚类算法在解空间中搜索,给出了一种新的启发式聚类算法。该算法很好地避免了启发式聚类算法初始解敏感的问题,有效地提高了聚类质量。 Clustering is a kernel problem in data mining area which has become a hot research topic.The clustering problem which was described by combinatorial optimization is NP-hard,so the researchers to solve it by using heuristic search method.For the complexity of search space,thereby,heuristic clustering algorithms are easy be effected by initial result.In this paper,we propose a novel heuristic clustering algorithm which was guided by variable neighborhood search.Experimental results show that the proposed algorithm has ability to deal with initialization problem and could improve the quality of clustering result.
出处 《皖西学院学报》 2015年第5期74-77,93,共5页 Journal of West Anhui University
基金 安徽省教育厅自然科学基金重点项目(KJ2014A277) 六安市市级科研项目(2012LW016)
关键词 聚类分析 变邻域搜索 K-mediods clustering analysis variable neighborhood search K-mediods
  • 相关文献

参考文献13

  • 1Maimon O. , Rokach L. Data Mining and Knowledge Dis- covery Handbood[M]. Spring, 2010.
  • 2孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1077
  • 3Drinesa P. , Frieze A. , Kannan R. Clustering Large Graphs Via the Singular Value Decomposition [J]. Machine Learn- ing, 2004, 56(1-3): 9-33.
  • 4Kaufman L. , Rousseeuw P.J. Finding Groups in Data: an Introduction to Cluster Analysis[M]. John Wiley Sons, 1990.
  • 5Ng R. , Hart J. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IE'EE Trans on Knowledge and Data Engineering[J], 2002, 14(5): 1003-1016.
  • 6宗瑜,江贺,张宪超,单世民.空间平滑搜索CLARANS算法[J].小型微型计算机系统,2008,29(4):667-671. 被引量:2
  • 7金萍,宗瑜,李明楚.一种噪声启发式聚类算法[J].合肥工业大学学报(自然科学版),2009,32(6):786-790. 被引量:1
  • 8金萍,宗瑜,李明楚.共有信息引导的启发式聚类算法[J].计算机工程与应用,2010,46(31):50-53. 被引量:2
  • 9宗瑜,李明楚,江贺.近似骨架导向的归约聚类算法[J].电子与信息学报,2009,31(12):2953-2957. 被引量:12
  • 10Xu G. D. , Zong Y. , Jin P. ,et al. KIPTC.. a Kernel In- formation Propagation Tag Clustering Algorithm [J]. Journal of Intelligent Information System, 2015,45 (1) : 95-112.

二级参考文献69

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Xu Rui, Wunsch D. Survey of clustering algorithms[J]. IEEE Trans on Neural Network,2005,16(3):645-678.
  • 3Berkhin P. Survey of clustering data mining techniques [R]. San Jose, CA: Accrue Software, 2002.
  • 4Drinesa P, Frieze A, Kannan R, et al. Clustering large graphs via the singular value decomposition[J]. Maeh Learn, 2004, 56(1-3): 9-33.
  • 5Sahni S, Gonzalez T. P-complete approximate problems [J].J ACM, 1976, 23(3):555-565.
  • 6Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster analysis[M]. New York: John Wiley & Sons, 1990:89-133.
  • 7Ng R, Han J. CLARANS: a method for clustering objects for spatial data mining[J]. IEEE Trans on Knowledge, Data Engineering, 2002,14(5) : 1003-1016.
  • 8Brown D E, Huntley C L. A practical application of simulated annealing to clustering[J]. Pattern Recognit, 1992,25 (4) :401-412.
  • 9Selim S Z, Alsultan K. A simulated annealing algorithm for the clustering problems [J]. Pattern Reeognit, 1991, 24 (10) : 1003-1008.
  • 10Fery B J, Dueck D. Clustering by passing messages between data points[J]. Science,2007, 315(2):972-976.

共引文献1096

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部