期刊文献+

多策略并行学习的异构粒子群优化算法 被引量:1

Heterogenous particle swarm optimization algorithm with multi-strategy parallel learning
下载PDF
导出
摘要 针对标准粒子群优化(PSO)算法在复杂问题上收敛速度慢和早熟收敛的缺点,提出了一种多策略并行学习的异构PSO算法(MHPSO)。该算法首先从种群多样性和跳出局部极值的角度提出了两种新学习策略(局部扰动学习策略和高斯子空间学习策略),并将这两种策略与MBB-PSO策略融合组成高效稳定的策略池。其次提出了一种简单有效的策略更换机制,指导粒子迭代寻优中何时更换学习策略。基准测试函数的实验结果表明,改进的粒子群优化算法在求解精度和收敛速度上得到极大的提高。与一些改进PSO算法(如自适应的粒子群优化(APSO)算法等)相比,所提算法具有更优良的寻优性能。 The standard Particle Swarm Optimization (PSO) suffers from the premature convergence problem and the slow convergence speed problem when solving complex optimal problems, so a Heterogenous PSO with Multi-strategy parallel learning (MHPSO) was presented. Firstly two new learning strategies, named local disturbance learning strategy and Gaussian subspace learning strategy respectively, were proposed to maintain the population's diversity and jump out from the local optima. And an efficient and stable strategy pool was constructed by combing the above two strategies with the existed one (MBB-PSO) ; Secondly, a simpler and more effective strategy change mechanism was proposed, which could guide particles when to change the learning strategy. The experimental study on a set of classical test functions show that the proposed approach improves the solution accuracy and convergence speed greatly, and has a superior performance in comparison with several other improved PSO algorithms, such as APSO (Adaptive Particle Swarm Optimization).
作者 王芸 孙辉
出处 《计算机应用》 CSCD 北大核心 2015年第11期3238-3242,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61261039 61305150) 教育部人文社科青年基金交叉项目(13YJCZH174) 江西省教育厅落地计划项目(KJLD13096) 江西省科技厅自然科学基金资助项目(20122BAB201043 20151BAB207067 20151BAB207032)
关键词 粒子群优化算法 局部扰动学习策略 高斯子空间学习策略 策略池 策略更换 Particle Swarm Optimization (PSO) algorithm local disturbance learning strategy gaussian subspace learning strategy strategy pool strategy change
  • 相关文献

参考文献14

  • 1KENNEDY J,EBERHART R.Particle swarm optimization[C]// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway: IEEE,1995,4:1942-1948.
  • 2ZHAN Z, ZHANG J, LI Y, et al.Adaptive particle swarm optimization[J].IEEE Transactions on Systems, Man, and Cybernetics,2009,39(6):1362-1381.
  • 3LIANG J J, QIN A K, SUGANTHAN P N, et al.Comprehensive learning particle swarm optimizer for global optimization of multi-modal function[J]. IEEE Transactions on Evolutionary Computation,2006,10(3): 281-295.
  • 4ENGELBRECHT A P. Heterogenous particle swarm optimization[C]// Proceedings of the 7th International Conference on Swarm Intelligence. Berlin: Springer-Verlag,2010:191-202.
  • 5WANG Y, LI B, WEISE T, et al.Self-adaptive learning based particle swarm optimization[J].Information Sciences,2011,181(20):4515-4538.
  • 6NEPOMUCENO F V, ENGELBRECHT A P. A self-adaptive heterogeneous PSO for real-parameter optimization[C]// Proceedings of the 2013 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2013:361-368.
  • 7伍大清,郑建国.基于混合策略自适应学习的并行粒子群优化算法[J].控制与决策,2013,28(7):1087-1093. 被引量:28
  • 8LI C, YANG S, NGUYEN T T. A self-learning particle swarm optimizer for global optimization problems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernectics,2012,42(3):627-646.
  • 9CLERC M, KENNEDY J. The particle swarm-explosion,stability and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002,6(1): 58-73.
  • 10KENNEDY J.Bare bones particle swarms[C]// Proceedings of the 2003 IEEE Swarm Intelligence Symposium. Piscataway: IEEE, 2003:80-87.

二级参考文献15

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 2Kennedy J, Eberhart R. Particle swarm optimization[C] . IntConf on Neural Networks. Perth: IEEE, 1995: 1942-1948.
  • 3Scriven I,Junwei L,Lewis A. Electromagnetic noisesource approximation for finite-difference time-domainmodeling using near-field scanning and particle swarmoptimization[J] .IEEE Trans on Electro-magneticCompatibility, 2010,52(1): 89-97.
  • 4Wei-Neng Chen, Jun Zhang, Chung H S-H. A novel set-based particle swarm optimization method for discreteoptimization problems[J] . IEEE Trans on EvolutionaryComputation, 2010, 14(2): 278-300.
  • 5Rong-Jong Wai, Jeng-Dao Lee. Real-time PID controlstrategy for maglev transportation system via article swarmoptimization[J] . IEEE Trans on Industrial Electronics,2010,58(2): 629-646.
  • 6Liang IJ,Qin A K,Suganthan P N,et al. Comprehensivelearning particle swarm optimizer for global optimizationof multimodal functions [J] . IEEE Trans on EvolutionaryComputation, 2006, 10(3): 281-295.
  • 7Changhe Li, Shengxiang Yang. An adaptive learningparticle swarm optimizer for function optimization[C] .IEEE Congress on Evolutionary Computation. Trondheim,2009: 381-388.
  • 8Mendes R,Kennedy J, Neves J. The fully informedparticle swarm: Simpler, maybe better[J] . IEEE Trans onEvolutionary Computation, 2004, 8(3): 204-210.
  • 9Huang V L,Suganthan P N. Differential evolutionalgorithm with strategy adaptation for global numericaloptimization[J] . IEEE Trans on Evolutionary Computation,2009,13(2): 398-417.
  • 10Jasper A, Vrugt Bruce A Robinson, James M Hyman.Self-adaptive multimethod search for global optimizationin real-parameterspaces[J] . IEEE Trans on EvolutionaryComputation, 2009, 13(2): 243-259.

共引文献27

同被引文献3

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部