期刊文献+

基于局部最大梯度的无参考图像质量评价 被引量:4

No-reference Image Quality Assessment Based on Local Maximum Gradient
下载PDF
导出
摘要 图像质量评价在数字图像处理中应用广泛,无参考图像质量评价更是近些年来的研究热点。该文提出一种基于局部结构的无参考图像质量评价方法,该方法首先利用局部梯度选择强边缘区域,然后通过强边缘的信息来评价图像的质量。该方法的创新之处在于:基于局部最大梯度的像素点质量评价;利用强边缘点的局部质量来估计全局图像质量。该方法可以同时评价噪声图像和模糊图像,图像失真越严重,该方法的评价分数就越低。与图像质量评价数据库的主观评价结果比较表明,该文方法与主观评价结果相关性很强,能很好地反映图像质量的视觉感知效果。 Image Quality Assessment (IQA) is widely used in digital image processing, and No Reference IQA (NR-IQA) has become the research focus recently. This paper proposes an NR-IQA method based on local structure, which chooses strong structure areas by using local gradients, and assesses the quality of image by utilizing the Maximum Local Gradients (MLG) of strong structure areas. The main novelties are: pixel,s quality assessment based on MLG; whole image quality based on strong edge points, quality. The proposed method can assess noise image and blur image at the same time, and the score of the proposed method is smaller when the distortion is more serious. The results show that the proposed no-reference method for the quality prediction of noise and blur images has a comparable performance to the leading metrics available in literature.
作者 蒋平 张建州
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第11期2587-2593,共7页 Journal of Electronics & Information Technology
关键词 图像质量评价 梯度模板 高斯噪声 高斯模糊 Image quality assessment Gradient mask Gaussian noise Gaussian blur
  • 相关文献

参考文献18

  • 1Liu H and Heynderickx I. Visual attention in objective imagequality assessment: Based on eye-tracking data[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(7): 971-982.
  • 2Hassen R, Wang Z, and Salama M. Image sharpness assessment based on local phase coherence[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2798-2810.
  • 3Wang Z, Bovik A C, Sheikh H R, et al.. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 4Xue W F, Zhang L, Mou X Q, et al.. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 2014, 23(2): 684-695.
  • 5Rehman A and Wang Z. Reduced-reference image quality assessment by structural similarity estimation[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3378-3389.
  • 6Zeng K and Wang Z. Polyview fusion: a strategy to enhance video-denoising algorithms[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2324-2328.
  • 7Li C F, Ju Y W, Bovik A C, et al.. No-training, no-reference image quality index using perceptual features[J]. Optical Engineering, 2013, 52(5): 188-194.
  • 8Saha A and Wu Q M. Utilizing image scales towards totally training free blind image quality assessment[J]. IEEE Transactions on Image Processing, 2015, 24(6): 1879-1892.
  • 9Mittal A, Muralidhar C S, and Bovik A C. Making a 'completely blind' image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212.
  • 10Bahrami K and Kot A C. A fast approach for no-reference image sharpness assessment based on maximum local variation[J]. IEEE Signal Processing Letters, 2014, 21(6): 751-755.

二级参考文献29

  • 1Liu H T, Redi J, Alers H, et al.. No-reference image qualityassessment based on localized gradient statistics: applicationto JPEG and JPEG2000[C]. Proceedings of SPIE, 2010,7527(1): 75271F.
  • 2Wang Z, Bovik A C, Sheikh H R, et al.. Image qualityassessment: from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004, 13(4):600-612.
  • 3Sheikh H R and Bovik A C. Image information and visualquality[J]. IEEE Transactions on Image Processing, 2006,15(2): 430-444.
  • 4Mansouri A, Aznaveh A, Torkamani-Azar F, et al.. Imagequality assessment using the singular value decompositiontheorem[J]. Optical Review, 2009, 16(2): 49-53.
  • 5Lahoulou A, Viennet E, Bouridane A, et al.. A completestatistical evaluation of state-of-the-art image qualitymeasures[C]. 7th International Workshop on Systems, SignalProcessing and Their Applications (WOSSPA), Tipaza,Algeria, 2011: 219-222.
  • 6Moorthy A and Bovik A. Blind image quality assessment:from natural scene statistics to perceptual quality[J]. IEEETransactions on Image Processing, 2011, 20(12): 3350-3364.
  • 7Cohen E and Yitzhaky Y. No-reference assessment of blurand noise impacts on image quality[J]. Signal, Image andVideo Processing, 2010, 4(3): 289-302.
  • 8Wang Z, Xie Z, and He C. A fast quality assessment of imageblur based on sharpness[C]. 3rd International Congress onImage and Signal Processing (CISP), Yantai, China, 2010:2302-2306.
  • 9Xin W, Baofeng T, Chao L, et al.. Blind image qualityassessment for measuring image blur[C]. 2008 Congress onImage and Signal Processing (CISP 2008), Sanya, China,2008: 467-470.
  • 10Congli L, Xiushun Y, Wenbing C, et al.. Study on the IQAmethod for polarization image based on degree of noisepollution[C]. International Conference on Information andAutomation, Zhuhai, China, 2009: 1468-1472.

共引文献23

同被引文献25

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部