期刊文献+

多频段典型地表的双站雷达散射回波预测

Multi-band Bistatic Radar Echo Prediction from the Terrian Surfaces
下载PDF
导出
摘要 双站雷达在反隐身、超低空防御方面具有独特优势,但双站测量装置较为复杂,地表参数的准确获取工作耗时耗力,且精度难以保证,地表双站雷达散射数据极其匮乏。为解决上述问题,该文以L/S/X/Ku波段裸土、水泥地和粗糙沙地后向散射实测数据为例,忽略地表的精细结构,采用等效面散射模型和遗传算法反演了各地表的等效介电常数和粗糙度参数,获取其等效参数统计特征,实现对地表双站雷达散射回波的预测。结果表明:该等效面散射模型保证了地表的后向和双站散射回波预测精度;地表双站雷达散射回波随入射波频率的增大而增大;随散射角的增大先增大而后减小,并在镜像方向出现最大值;随散射方位角的增大,地表散射回波先减小而后增大,HH极化双站散射回波的最小值一般出现在90?方位角处,而VV极化双站散射回波的最小值位置随入射角的增大从90?方位角向小角度方向偏移,并与入射波频率、地表湿度以及粗糙度参数相关,该双站散射特性可用于地表参数的反演以及目标的反隐身研究。 Bistatic radar has an advantage in the anti-stealth and low altitude defense, but the bistatic scattering data measured from the terrian surface are extremely scarce. To solve this problem, the genetic algorithms and the backscattering data from the soil, concrete and the sand surface in L/S/X/Ku band are used to retrieve the effective permittivity and the roughness parameters of the land, and then the bistatic scattering data are predicted. The research above proves that the land equivalent surface scattering model is effective. The bistatic scattering echo increases with frequency, and it first increases and then decreases along with the scattering angles, first decreases and then increases along with the scattering azimuth angles. The minimum value of the bistatic scattering echo always appears in the 90 degree azimuth angles for the HH polarization, and it shifts from 90 degree azimuth angles to the small angle direction for the VV polarization. And also it is related to incident frequency, the moisture and the roughness of land. The bistatic scattering characteristics of land surface can be used for the anti-stealth research and the inversion of the land parameters.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第11期2749-2755,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61172031)~~
关键词 双站地表散射 多波段测量 等效参数反演 Bistatic land scattering Multi-band measurement Equivilent parameters inversion
  • 相关文献

参考文献19

  • 1Schlund M, Poncet F V, Hoekman D H, et al.. Importance of bistatic SAR features from TanDEM-X for forest mapping and monitoring[J]. Remote Sensing of Environment, 2014, 151(8): 16-26.
  • 2Gupta D K, Kumar P, Mishara V N, et al.. Bistatic measurements for the estimation of Rice crop variables using artifical neural network[J]. Advances in Space Reasearch, 2015(55): 1613-1623.
  • 3Nashashibi A Y and Ulaby F T. MMW polarimetric radar bistatic scattering from a random surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1743-1755.
  • 4Johnson J T and Ouellette J D. Polarization features in bistatic scattering from rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1616-1626.
  • 5Ulaby F T, Moore R K, and Fuag A K. Microwave Remote Sensing[M]. Massachusetts: Artech House, 1990, Vol. 2, Chapter 11.
  • 6Panciera R, Tanase M A, Lowell K, et al.. Evaluation of IEM, Dubois, and Oh radar backscatter models using airborne L-band SAR[J]. IEEE Transactions on Geoseience and Remote Sensing, 2014, 52(8): 4966-4979.
  • 7张文吉,张晓娟,李芳.分层土壤后向散射及其在深层土壤湿度探测中的应用[J].电子与信息学报,2008,30(9):2107-2110. 被引量:2
  • 8Tabatabaeenejad A, Burgin M, Duan X Y, et al.. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: first AirMOSS results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 645-658.
  • 9Nashashibi A Y. Sarabaadi K. A1-Zaid F A. et al.. Anempirical model of volume scattering from dry sand-covered surfaces at millimeter-wave frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6}: 3673-3682.
  • 10Sarabandi K, Li E S, and Nashashibi A. Modeling and measurements of scattering from road surfaces at millimeter-wave frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 45(11): 1679-1688.

二级参考文献42

  • 1成跃进.P波段SAR的独特作用及意义[J].空间电子技术,1996(1):41-42. 被引量:1
  • 2Schmidt R O.Multiple emitter location and signal parameter estimation[J].IEEE Trans.on Antennas.Propagat.,1986,34(3):276-280.
  • 3Blaricum M L,Mittra R.Problems and solutions associated with Prony's methods for processing transient data[J].IEEE Trans.on AntennasPropagat.,1978,26(1):174-182.
  • 4Hurst M P.Scattering center analysis via prony's method[J].IEEE Trans.on Antennas Propagat.,1978,35(8):986-988.
  • 5Hua Yingbo.Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[J].IEEE Trans.on AES.,1990,38(5):814-824.
  • 6Tsao Jenho,Steinberg B D.Reduction of sidelobe and speckle artifacts in microwave imaging:The CLEAN technique[J].IEEE Trans.on Antennas Propagat.,1988,36(4):543-556.
  • 7Choi I S,Kim H T.One-dimensional evolutionary programing -based CLEAN[J].Electronics Letters,2001,37(6):400-401.
  • 8Li Qing,et al..Scattering center analysid of radar targets using fitting scheme and genetic Algorithm[J].IEEE Trans.on Antennas Propagat.,1996,44(2):198-206.
  • 9Altes R A.Sonar for generalized target description and its similarity to animal echolocation systems[J].J.Acoust.Soc.Amer.,1976,59(1):97-105.
  • 10Liu Z S,Li J.Implementation of the RELAX algorithm[J].IEEE Trans.on AES.,1998,34(2):657-664.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部