期刊文献+

基于扩展Kalman滤波的单领航者自主水下航行器协同导航判别式训练方法研究 被引量:4

Discriminative Training of Kalman Filters Based Cooperative Navigation for Multiple Autonomous Underwater Vehicles with a Single Leader
下载PDF
导出
摘要 单领航者自主水下航行器(AUV)协同导航算法中,系统模型是非线性的,扩展Kalman滤波(EKF)是针对非线性系统的很有影响力的滤波算法,但是,EKF算法的性能严格依赖于一系列模型参数,而这些参数往往需要花费很大的代价来捕获,并且常需要人工调整。该文应用一种能自动学习Kalman滤波噪声协方差参数的方法,通过仿真分析,证明了该学习算法可以完全自主并且高效、准确地输出Kalman滤波噪声参数,进一步提高了单领航者AUV协同导航系统的导航精度。 In the cooperative navigation algorithm for multiple Autonomous Underwater Vehicles (AUVs)with a single leader, the model of the systemis nonlinear. The Extended Kalman Filter (EKF), which is directed against the nonlinear system, is one of the most influential techniques. However, the performance of EKF critically depends on a large number of modeling parameters which can be very difficult to obtain, and are often set by manual tweaking and at a great cost. In this paper, a method for automatically learning the noise covariance of a Kalman filter is applied, and the simulation result shows that this algorithm fully automatically and quickly outputs the noise covariance, which improves the navigation accuracy of the cooperative navigation system.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第11期2756-2761,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61372180)~~
关键词 自主水下航行器 协同导航 扩展Kalman滤波 自动学习噪声参数 Autonomous Underwater Vehicle (AUV) Cooperative navigation Extended Kalman Filter (EKF) Automatically learning the noise parameters
  • 相关文献

参考文献13

  • 1Paull L, Saeedi S, Seto M, et al.. AUV navigation and localization: A review[J]. IEEE Journal of Oceanic Engineering, 2014, 39(4): 131-149.
  • 2Liu Ming-yong, Li Hong, and Liu Kun. Geomagnetic navigation of AUV without a priori magnetic map[C]. MTS/ IEEE OCEANS, Taipei, 2014: 1-5.
  • 3Kalman R. A new approach to linear filtering and prediction problems[J]. Transactions of the ASME-Journal of Basic Engineering, 1966, 82(Series D): 35-45.
  • 4Abbeel P, Coates A, Montemerlo M, et al.. Discriminative training of Kalman filters[C]. Robotic: Science and Systems, Cambridge, 2005: 289-296.
  • 5Zhang Li-chuan, Xu De-min, Liu Ming-yong, et al.. Cooperative navigation and localization for multiple UUVs [J]. Journal of Marine Science and Application, 2009, 8(3): 216-221.
  • 6Fallon M, Papadopoulos G, Lenorad J, et al.. Cooperative AUV navigation using a siagle maneuvering surface craft[J]. The International Journal of Robotics Research, 2011, 29(12): 1461-1474.
  • 7李闻白,刘明雍,李虎雄,陈学永.基于单领航者相对位置测量的多AUV协同导航系统定位性能分析[J].自动化学报,2011,37(6):724-736. 被引量:14
  • 8Liu Ming-yong, Li Wen-bai, Mu Bing-xian, et al.. Cooperative navigation for multiple AUVs based on relative range measurements with a single leader[C]. IEEE International Conference on Intelligent Computing and Intelligent Systems, Xiamen, 2010: 762-766.
  • 9Liu Jian, Xu De-min, Zhang b-ha-bin, et al.. Research on cooperative navigation for multiple UUVs[C]. International Symposium on Instrumentation & Measurement, Sensor Network and Automation, Sanya, 2012: 248-251.
  • 10Maki T, Matsuda T, Sakamaki T, et al.. Navigation method for underwater vehicles based on mutual acoustical positioning with a single seafloor station[J]. IEEE Journal of Oceanic Engineering, 2013, 38(1): 167-176.

二级参考文献4

共引文献13

同被引文献28

引证文献4

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部