期刊文献+

临床数据管理中的统计分析人群划分 被引量:4

Importance of data management with statistical analysis set division
原文传递
导出
摘要 统计分析人群划分是数据库锁定前的一项重要数据管理工作,也是影响试验假设是否成立的关键环节。盲态下统计分析人群划分的客观性是对试验结果科学性的保证。所有随机化后接受过试验治疗的受试者均应进入安全性数据集,全分析集应尽可能接近符合意向性分析原则的理想的受试者集,符合方案集的划分是盲态审核中主观性较强、最难以把握的环节。客观的划分统计分析人群涉及到数据的准确性、核查的全面性以及讨论的科学性,无一不是对数据管理的严格要求。确保统计分析人群划分的客观性、科学性既是提高数据管理质量的重要途径,也是主要目的之一。 Testing of hypothesis was affected by statistical analysis set division which was an importantdata management work before data base lock-in. Objective division of statistical analysis set under blindingwas the guarantee of scientific trial conclusion. All the subjects having accepted at least once trial treatmentafter randomization should be concluded in safety set. Full analysis set should be close to the intention-to-treatas far as possible. Per protocol set division was the most difficult to control in blinded examination because ofmore subjectivity than the other two. The objectivity of statistical analysis set division must be guaranteed bythe accurate raw data, the comprehensive data check and the scientific discussion, all of which were the strictrequirement of data management. Proper division of statistical analysis set objectively and scientifically is animportant approach to improve the data management quality.
出处 《药学学报》 CAS CSCD 北大核心 2015年第11期1464-1469,共6页 Acta Pharmaceutica Sinica
关键词 统计分析人群 数据管理 安全性数据集 全分析集 符合方案集 statistical analysis set data management safety set full analysis set per protocol set
  • 相关文献

参考文献9

  • 1Center of Drug Evaluation, CFDA. Technical Guidelines for Data Management in Clinical Trials (临床试验数据管理工作技术指南) [S]. 2012. http://www.cde.org.cn/news.do? method=largelnfo&id= 312673.
  • 2European Medicines Agency. ICH Harmonised TripartiteGuideline, Topic E9: Statistical Principles for Clinical Trials [S]. 2005.
  • 3Center for Drug Evaluation, CFDA. Technical Guideline for Biostatistics of Chemical Drug and Biological Product ClinicalTrials(化学药物和生物制品临床试验的生物统计学技术指导原则)[S].2005.
  • 4Soon G. Missing data - prevention and analysis [J]. J Bio- pharm Stat, 2009, 19:941-944.
  • 5Rubin DB. Inference and missing data [J]. Biometrika, 1976, 63:581-592.
  • 6Little RJA, Rubin DB. Statistical Analysis with Missing Data (2nd edition) [M]. New York: Wiley, 2002.
  • 7Siddiqui O, Hung HMJ, O'Neil R. MMRM vs LOCF: a com- prehensive comparison based on simulation study and 25 NDA datasets [J]. J Biopharm Stat, 2009, 19: 227-246.
  • 8Shao J, Jordan DC, Pritchett YL. Baseline observation carry forward: reasoning, properties, and practical issues [J]. J Biopharm Star, 2009, 19: 672-684.
  • 9World Health Organization. WHO Drug Dictionary [S]. 2015.

共引文献5

同被引文献55

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部