期刊文献+

植物非细胞自主性小RNA分子研究进展

Advances on the Research of Non-cell-autonomous Small RNAs in Plants
下载PDF
导出
摘要 非细胞自主性是RNA干扰的主要特点之一,表现为沉默效应可以在细胞、组织和生物个体间传递和扩散,可移动的小RNA分子在这种非细胞自主性的沉默扩散中发挥了核心作用。近年来的研究表明小RNA分子可以与转录因子、多肽和植物激素一样传递胞间信息,并以其特有的方式调控发育模式、响应环境胁迫、增强病毒抗性和维持转座子的沉默。综述了近年来在植物非细胞自主性RNAi研究中取得的主要进展,主要介绍了通过韧皮部和胞间连丝途径传递沉默信号的各种小RNA分子及其生物学作用、非细胞自主性小RNA的分子特征和运输效率的调控,并对存在的问题及其研究前景进行了展望。 One of the most fascinating features of RNA interference(RNAi)is its ability to transmit and spread from cell to cell. Such non-cell-autonomous silencing effects can also occur between tissues and organisms, in which the mobile small RNAs play a key role. However, the nature of non-cell-autonomous small RNAs is somewhat elusive. Recent studies have implied that small RNAs, including si RNAs and mi RNAs, can transmit intercellular messages as transcriptional factors, peptide ligands and plant hormones do, and specifically are involved in a variety of biological processes of regulating developmental patterns, responding environmental stress, enhancing antiviral defense, and maintaining the silence of transposon. In this article we review the recent major research advances on the non-cell-autonomous RNAi, mainly focusing on the varied small RNAs transmitting the silence signals via the pathways of phloem and plasmodesma as well as their biological roles, also their molecular properties and regulation of mobility. Further potential problems and prospects of future researches are discussed.
出处 《生物技术通报》 CAS CSCD 北大核心 2015年第10期16-23,共8页 Biotechnology Bulletin
基金 国家自然科学基金项目(31170255 31370359)
关键词 RNA干扰 沉默效应 非细胞自主性 小RNA 分子特征 运输调控 RNA interference silencing effects non-cell-autonomous small RNAs molecular properties mobility regulation
  • 相关文献

参考文献54

  • 1Voinnet O, Baulcombe DC. Systemic signalling in gene silencing[J]. Nature, 1997, 389(6651):553.
  • 2Palauqui JC, Elmayan T, Pollien JM, et al. Systemic acquired silencing:transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions[J]. The EMBO Journal, 1997, 16(15):4738-4745.
  • 3Fire A, Xu SQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669):806-811.
  • 4van Bel AJE. The phloem, a miracle of ingenuity[J]. Plant, Cell & Environment, 2003, 26(1):125-149.
  • 5Yoo BC, Kragler F, Varkonyi-Gasic E, et al. A systemic small RNA signaling system in plants[J]. The Plant Cell Online, 2004, 16(8):1979-2000.
  • 6Buhtz A, Springer F, Chappell L, et al. Identification and characterization of small RNAs from the phloem of Brassica napus[J]. The Plant Journal, 2008, 53(5):739-749.
  • 7Chen X. MicroRNA biogenesis and function in plants[J]. FEBS Letters, 2005, 579(26):5923-5931.
  • 8Pant BD, Buhtz A, Kehr J, et al. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis[J]. The Plant Journal, 2008, 53(5):731-738.
  • 9Lin SI, Chiang SF, Lin WY, et al. Regulatory network of microRNA399 and PHO2 by systemic signaling[J]. Plant physiology, 2008, 147(2):732-746.
  • 10Ding SW, Voinnet O. Antiviral immunity directed by small RNAs[J]. Cell, 2007, 130(3):413-426.

二级参考文献56

  • 1Aid T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S. 2008. Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiology, 49:767 - 790.
  • 2Aoki K, Kragler F, Xoconostlv-Cazams B, Lucas W J. 2002. A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitatestrafficking through plasmodesmata. Proceedings of the National Academyof Sciences of the United States of America, 99:16342 - 16347.
  • 3Aoki K, Suzui N, Fujimaki S, Dohmao N, Yonekura-Sakakibara K, Fujiwara T, Hayashi H, Yamaya T, Sakakibara H. 2005. Destination-selective long-distance movement of phloem r~roteins. Plant Cell, 17:1801 - 1814.
  • 4Atkins C A, Smith P M. 2007. Translocation in legumes: Assimilates, nutrients and signaling molecules. Plant Physiology, 144:550 - 561.
  • 5Atldns C A, Smith P M, Rodriguez-Medina C. 2011. Macromolecules in phloem exudates - a review. Protoplasma, 248:165 - 172.
  • 6Aukerman M J, Sakai H. 2003. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-1ike target genes. Plant Cell, 15." 2730- 2741.
  • 7Banerjee A K, Chatterjee M, Yu Y, Suh S G, Miller W A, Hannapel D J. 2006. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell, 18:3443 - 3457.
  • 8Banerjee A K, Lin T, Hannapel D J. 2009. Untranslated regions of a mobile transcript mediate RNA metabolism. Plant Physiology, 151 : 1831 - 1843.
  • 9Buhtz A, Pieritz J, Springer F, Kehr J. 2010. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biology, 10: 64.
  • 10Buhtz A, Springer F, Chappell L, Baulcombe D C, Kehr J. 2008. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant Journal, 53:739 - 749.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部