期刊文献+

基于模型的多因子降维方法在基因-基因/环境交互作用分析中的应用 被引量:4

Detecting gene-gene/environment interactions by model-based multifactor dimensionality reduction
原文传递
导出
摘要 介绍一种基于模型的多因子降维方法(MB-MDR),并通过实例说明其分析流程及其在基因一基因/环境交互作用分析中的应用。结果显示该方法可用于原始样本量较小的资料研究,同时也能解决许多经典MDR方法的不足;与其他MDR扩展方法相比,在探索交互作用方面具有更高的统计效能,并已成功应用于膀胱癌、湿疹等研究。MB-MDR能够处理二元性状和数量性状,并可在模型中调整因子的边际效应和混杂因子,与其他非参数方法相比具有一定优势。因此MB-MDR在基因一基因/环境交互作用分析中具有较好的应用前景。 This paper introduces a method called model-based multifactor dimensionality reduction (MB-MDR), which was firstly proposed by Calle et al., and can be applied for detecting gene-gene or gene-environment interactions in genetic studies. The basic principle and characteristics of MB-MDR as well as the operation in R program are briefly summarized. Besides, the detailed procedure of MB-MDR is illustrated by using example. Compared with classical MDR, MB-MDR has similar principle, which merges multi-locus genotypes into a one-dimensional construct and can be used in the study with small sample size. However, there is some difference between MB-MDR and classical MDR. First, it has higher statistical power than MDR and other MDR in the presence of different noises due to the different way the genotype cells merged. Second, compared with MDR, it can deal with all binary and quantitative traits, adjust marginal effects of factors and confounders. MB-MDR could be a useful method in the analyses of gene-gene/environment interactions.
出处 《中华流行病学杂志》 CAS CSCD 北大核心 2015年第11期1305-1310,共6页 Chinese Journal of Epidemiology
基金 卫生部科学研究基金(WKJ2004-2-014)
关键词 基于模型的多因子降维法 交互作用 效能 Model-based multifactor dimensionality reduction Interaction Power
  • 相关文献

参考文献14

  • 1唐迅,李娜,胡永华.应用多因子降维法分析基因-基因交互作用[J].中华流行病学杂志,2006,27(5):437-441. 被引量:30
  • 2Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions amongestrogen-metabolism genes in sporadic breast cancer [J]. Am JHum Genet,2001,69(1): 138-147.
  • 3Lou XY, Chen GB, Yan L, et al. A generalized combinatorialapproach for detecting gene-by-gene and gene-by-environmentinteractions with application to nicotine dependence [J]_ Am JHum Genet,2007,80(6) :1125-1137.
  • 4Calle ML, Urrea V,Malats N, et al. MB-MDR: model-basedmultifactor dimensionality reduction for detecting interactions inhigh-dimensional genomic data[J]. Ann Hum Genet, 2008,75:1-14.
  • 5Mahachie John JM, van Lishout F,van Steen K. Model-BasedMultifactor Dimensionality Reduction to detect epistasis forquantitative traits in the presence of error-free and noisy data[j].Eur J Hum Genet,2011,19(6) :696-703.
  • 6Tanaka T, Ordovas JM, Delgado-Lista J, et al. Peroxisomeproliferator-activated receptor alpha polymorphisms andpostprandial lipemia in healthy men [j]. J Lipid Res, 2007, 48(6):1402-1408.
  • 7Rudkowska I,Dewailly E,Hegele RA, et al. Gene-dietinteractions on plasma lipid levels in the Inuit population [J]. BrJNutr,2013,109(5) :953-961.
  • 8骆文书,郭志荣,武鸣,陈秋,周正元,俞浩,张丽君,刘景超.过氧化物酶体增殖物激活受体单核苷酸多态性以及基因-基因交互作用与体重异常的关系[J].中华流行病学杂志,2012,33(7):740-745. 被引量:8
  • 9中国成人血脂异常防治指南[J].中华心血管病杂志,2007,35(5):390-419. 被引量:5230
  • 10Hahn LW, Moore JH. Ideal discrimination of discrete clinicalendpoints using multilocus genotypes [J]. In Silico Biol, 2004,4(2):183-194.

二级参考文献199

共引文献5290

同被引文献26

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部