期刊文献+

应用多中心分区方法构建H_3分子反应势能面

Application of the Multi-Center Partition Method to Construct the Potential Energy Surface of H_3
下载PDF
导出
摘要 势能面在分子反应动力学的研究中起着非常重要的作用.本文提出了一种新的势能面构建方法——多中心分区法.通过比较London-Eyring-Polanyi-Sato(LEPS)势能、多体展开势能、置换对称不变多项式三种方法,确定了H3分子的最佳势能函数表达形式,并应用准经典轨线方法分析了势能面的合理性,结果表明置换对称不变多项式能很好地描述H3分子的势能面特征.结合置换对称不变多项式和本文提出的多中心分区方法,可以有效改善H3分子势能面的精度并可能推广到高维反应势能面. The potential energy surface plays an important role in studying molecular reaction dynamics. In this work, a new method, namely the "multi-center partition" method, is proposed to construct the potential energy surface of H3. The optimized function is first determined by comparing the London-Eyring-Polanyi-Sato(LEPS) potential, the many-body expansion potential, and the permutation-invariant polynomial potential. This comparison shows that the permutation-invariant polynomial fitting proposed by Bowman is the most efficient method for describing the topology of the H3 system. The quasi-classical trajectory method is used to analyze the rationality of those potential energy surfaces. By combining the multi-center partition method with the permutation-invariant polynomial method, the accuracy of the H3 molecular potential energy surface is greatly improved and could possibly be used in the fitting of potential energy surfaces in other systems.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第11期2077-2082,共6页 Acta Physico-Chimica Sinica
基金 国家留学基金委项目(201408420174) 湖北省教育厅科学技术项目(Q20133005) 湖北省自然科学基金(2014CFB428 2015CFB502)资助~~
关键词 势能面拟合 准经典轨线法 多中心分区 Potential energy surface fitting Quasi-classical trajectory method Multi-center partition
  • 相关文献

参考文献34

  • 1孙中发, 高治, 吴向坤, 唐国强, 周晓国, 刘世林. 物理化学学报, 2015, 31, 829.
  • 2李巍,屈军艳,赵新生.[He_3H]^+分子基态势能面的从头计算研究(英文)[J].物理化学学报,2003,19(8):751-756. 被引量:1
  • 3Le, H. A.; Frankcombe, T. J.; Collins, M. A. J. Phys. Chem. A 2010, 114 (40), 10783. doi: 10.1021/jp1060182.
  • 4Ramazani, S.; Frankcombe, T. J.; Andersson, S.; Collins, M. A. J. Chem. Phys. 2009, 130 (24), 244302. doi: 10.1063/1.3156805.
  • 5Moyano, G. E.; Jones, S. A.; Collins, M. A. J. Chem. Phys. 2006, 124 (12), 124318. doi: 10.1063/1.2181571.
  • 6Moyano, G. E.; Collins, M. A. Theor. Chem. Acc. 2005, 113 (4), 225. doi: 10.1007/s00214-004-0626-8.
  • 7Evenhuis, C. R.; Collins, M. A.; Lin, X.; Zhang, O. H. Amer. Chem. Soc. 2004, 227, 259.
  • 8Moyano, G. E.; Pearson, D.; Collins, M. A. J. Chem. Phys. 2004, 121 (24), 12396. doi: 10.1063/1.1810479.
  • 9Castillo, J. F.; Aoiz, F. J.; Ba?ares, L.; Collins, M. A. J. Phys. Chem. A 2004, 108 (32), 6611. doi: 10.1021/jp048366b.
  • 10Moyano, G. E.; Collins, M. A. J. Chem. Phys. 2003, 119 (11), 5510. doi: 10.1063/1.1599339.

二级参考文献27

  • 1屈军艳 李巍 赵新生.物理化学学报(Wuli Huaxue Xuebao),2002,18:629-629.
  • 2Murrell, J. N. ; Carter, S. ; Farantos, S. C. ; Huxley, P. ;Varandas, A. J. C. Molecular potential energy functions. New York: Wiley, 1984.
  • 3Varandas, A. J. C. ; Murrell, J. N. Faraday Discuss. Chem.Soc., 1977, 62:92.
  • 4Carter, S. ; Mills, I. M. ; Murrell, J. N. Mol. Phys., 1980,39:203.
  • 5Aguado, A. ; Paniagua, M. J. Chem. Phys., 1992, 96:1265.
  • 6Parker, G. A. ; Lagana, A. ; Crocchianti, S. ; Pack, R. T. J.Chem. Phys., 1995, 102:1238.
  • 7Aguado, A. ; Suarez, C. ; Paniagua, M. J. Chem. Phys.,1994, 101:4004.
  • 8Qu, J. Y. ; Li, W. ; Guo, R. ; Zhao, X. S. J. Chem. Phys.,2002, 117:2592.
  • 9Komasa, J. ; Rychlewski, J. Polish J. Chem., 1998, 72:1353.
  • 10Kim, S. T. ; Lee, J. S. J. Chem. Phys., 1999, 110:4413.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部