期刊文献+

基于分子对接和QSAR方法预测B-Raf Ⅱ型抑制剂活性 被引量:9

Accurate Activity Predictions of B-Raf Type Ⅱ Inhibitors via Molecular Docking and QSAR Methods
下载PDF
导出
摘要 B-Raf激酶在促分裂素原活化蛋白激酶(MAPK)信号转导通路中起着重要作用,已被确定为癌症治疗非常有吸引力的靶标.新型高效B-Raf抑制剂的开发成为癌症治疗的一个热门研究领域.本文以结构多样的B-Raf II型抑制剂为研究对象,联合应用分子对接和定量构效关系(QSAR)模型研究其定量构效关系去探讨抑制活性的起源.两个主题作为研究重点:生物活性构象和描述符.首先对分子对接方法(Glide、Gold、Ligand Fit、Cdocker和Libdock)进行准确性评价,后将研究的对象分子对接到B-Raf活性位点并获得生物活性构象.基于准确的对接结果,计算得到16个打分评价函数和21个能量描述符,以此构建定量构效关系模型.QSAR结果表明模型具有高度精确的拟合和强的预测能力(模型M1:r2=0.852,=0.790,=0.864;模型M2:r2=0.738,=0.812,=0.8605).同时探讨了对抑制活性有重要影响的描述符,结果表明打分评价函数(G_Score,-ECD,Dock_Score,PMF)与能量描述符(S(hb_ext),DE(int),Emodel)对抑制活性影响非常大.通过虚拟筛选和QSAR模型理论预测,一些新的具有潜在抑制活性的化合物作为B-Raf II型抑制剂被获得.上述信息对于进一步设计新颖高效的B-Raf II型抑制剂提供了有用的指导. B-Raf kinase plays an important role in the mitogen-activated protein kinase(MAPK) signaling transmission pathway and has been identified as an attractive target for cancer therapy. The exploitation of novel and efficient B-Raf inhibitors has become a hot research topic. In this study, we investigated quantitative structure–activity relationship(QSAR) to probe the origins of the inhibitory activities of B-Raf Type II inhibitors.We used structurally diverse B-Raf Type II inhibitors and an integrated docking and QSAR extended method.We focused mainly on two themes: bioactive conformations and descriptors. First, various molecular docking methods(Glide, Gold, Ligand Fit, Cdocker, and Libdock) were evaluated, and then all molecules were docked into the B-Raf active site to obtain the bioactive conformations. Secondly, based on the docking results, 16 scoring functions and 21 docking-generated energy-based descriptors were calculated to construct regression models. The results gave highly accurate fitting and had strong predictive abilities(M1: r2 = 0.852, =0.790, = 0.864; M2: r2 = 0.738, = 0.812, = 0.8605). The important descriptors were also explored to elucidate the main factors influencing the inhibition activities. The models suggested that the scoring functions(GScore,-ECD, DockScore, and PMF) and docking-generated energy-based descriptors(S(hbext), DE(int), and Emodel) were significant. Some new compounds that are potential B-Raf inhibitors were obtained through virtual screening and theoretical predictions using the established models. Such information is useful in guiding the design of novel and robust B-Raf Type II inhibitors.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第11期2191-2206,共16页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21102181,81302634)资助项目~~
关键词 B-RAF Ⅱ型抑制剂 分子对接 打分评价函数 对接能量描述符 定量构效关系模型 B-Raf Type Ⅱ inhibitor Molecular docking Scoring function Docking-generated energy-based descriptor Quantitative structure–activity relationship model
  • 相关文献

参考文献5

二级参考文献139

  • 1[1]Hopfinger AJ.A QSAR investigation of dihydrofolate reductase inhibition by baker trizaines based upon molecular shape analysis[J],J Am Chem Soc,1980,102(24):7196-7206.
  • 2[2]Contreras ML,Gonzalez FD,Munoz VC,et al. Computer assisted molecular design and biophore determination. Application to AIDS drugs[J]. Bol Soc Chil Quim,1995, 40(3):279-291.
  • 3[3]Crippen GM.Quantitative structure-activity relationships by distance geometry: systematic analysis of dihydrofolate reductase inhibitors[J]. J Med Chem,1980,23(6):599-606.
  • 4[4]Cramer III RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA) 1. Effect of shape on binding of steroids to carrier proteins[J].J Am Chem Soc,1988,110(18): 5959- 5967.
  • 5[5]Silverman BD. Three-dimensional moments of molecular property fields[J].J Chem Inf Comput Sci, 2000,40(6):1470-1476.
  • 6[6]Ferguson AM, Heritage T, Jonathon P, et al.EVA: a new theoretically based molecular descriptor for use in QSAR/QSPR analysis[J].J Comput Aided Mol Des, 1997,11(2):143-152.
  • 7[7]Gancia E, Bravi G, Mascagni P, et al. Global 3D-QSAR methods: MS-WHIM and autocorrelation[J],J Comput Aided Mol Des, 2000,14(3):293-306.
  • 8[8]Klebe G, Abraham U, Mietzner T.Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity[J]. J Med Chem, 1994,37(24):4130-4146.
  • 9[9]Pastor M, Cruciani G, McLay I, et al.GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors[J].J Med Chem, 2000,43(17):3233-3243.
  • 10[10]Verli H, Albuquerque MG, de Alencastro RB,et al.Local intersection volume: a new 3D descriptor applied to develop a 3D-QSAR pharmacophore model for benzodiazepine receptor ligands[J].Eur J Med Chem, 2002,37(3):219-229.

共引文献67

同被引文献112

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部