期刊文献+

在水热条件下利用微胶束对TiO_2纳米线阵列直径的精细调控

Finely Controlling the Diameter of the TiO_2 Nanowire Array by Micelles in the Reversed Micelle Reaction under Hydrothermal Condition
下载PDF
导出
摘要 通过探讨氧化钛纳米线阵列反应机制,建立了在水热条件下,氧化钛纳米线阵列在亲水掺铟氧化锡表面上由极性/非极性溶剂体系中形成的胶束内反应并生长的模型.并由此利用微胶束的尺寸限制作用,通过温度对微胶束尺寸进行调节,以及Cl–离子的晶面限制效应,实现了在较大范围内对纳米线直径的调控.另外反应体系中极性与非极性溶液的比例的变化对纳米阵列的直径影响不大,因此可以认为在此反应体系中,氧化钛纳米线的直径主要受到微胶束的限域效应以及Cl–离子的晶面限制效应影响.此方法可应用于其他相关氧化物纳米材料的尺寸控制合成中. We establish a model for growing titania nanowires arrays(TNAs) within micelles on the hydrophilic substrate of fluorine-doped tin oxide(FTO) in a reversed micelle reaction under hydrothermal conditions, and we discuss the mechanism that micelle size controlled the diameter in the TNAs growth progress. We produced TNAs with various diameters on FTO by adjusting the temperature, which changed the micelle size, and by using the crystal-plane suppressing effect of the Cl– ion. The volume ratio of the polar/nonpolar solvent barely influenced the nanowire diameter during growth. Based on this result, thinner TNAs can be prepared by using the restricting effect of the micelles and the crystal-plane suppressing effect of the Cl– ion. This method can also be used to synthesize other relative oxide nanomaterials.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第11期2207-2212,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(40372030) 国家级大学生创新创业训练项目基金(201210619021)资助~~
关键词 TiO2纳米线阵列 微胶束 纳米线直径 Cl–离子控制效应 TiO2 nanowire array Micelle Diameter of nanowire Cl– ionic control effect
  • 相关文献

参考文献22

  • 1Cao, C.; Hu, C.; Wang, X.; Wang, S.; Tian, Y.; Zhang, H. Sensors and Actuators B: Chemical 2011,156, 114. doi: 10.1016/j.snb.2011.03.080.
  • 2Inaba, M.; Oba, Y.; Niina, F.; Murota, Y.; Ogino, Y.; Tasaka, A.; Hirota, K. Journal of Power Sources 2009, 189, 580. doi: 10. I 016/j.jpowsour.2008.10.001.
  • 3Kim, H. S.; Nguyen, D. T.; Shin, E. C.; Lee, J. S.; Lee, S. K.; Ahn, K. S.; Kang, S. H. Electrochimica Acta 2013, 114, 159. doi: 10.1016/j.electacta.2013.09.170.
  • 4Liao, M. Y.; Fang, L.; Xu, C. L.; Wu, F.; Huang, Q. L.; Saleem, M. Materials Science in Semiconductor Processing 2014, 24, 1. doi: 10.1016/j.mssp.2014.02.037.
  • 5Liu, G.; Zhang, M.; Zhang, D.; Gu, X.; Meng, F.; Wen, S.; Chen, Y.; Ruan, S. Applied Surface Science 2014, 315, 55. doi: 10.1016/j.apsusc.2014.07.115.
  • 6Yang, H. Y.; Cheng, X. L.; Zhang, X. F.; Zheng, Z. K.; Tang, X. F.; Xu, Y. M.; Gao, S.; Zhao, H.; Huo, L. H. Sensors and Actuators B: Chemical 2014, 205, 322. doi: 10.1016/ j.snb.2014.08.092.
  • 7Cozzoli, P. D.; Kornowski, A.; Weller, H. Journal of the American Chemical Society 2003, 125, 14539. doi: 10.1021/ja036505h.
  • 8Nelson, J. Current Opinion in Solid State and Materials Science 2002, 6, 87. doi: 10.1016/S1359-0286(02)00006-2.
  • 9孙岚,左娟,赖跃坤,聂茶庚,林昌健.单根一维TiO_2纳米线的电子输运性能[J].物理化学学报,2007,23(10):1603-1606. 被引量:8
  • 10Han, Y.; Fan, C.; Wu, G.; Chen, H. Z.; Wang, M. The Journal of Physical Chemistry C 2011, 115, 13438. doi: 10.1021/ jp201413m.

二级参考文献18

  • 1Kivaisi, R. T.; Samiji, M. Solar Energy Materials and Solar Cells, 1999, 57(2): 141
  • 2Muzykov, P. G.; Khlebnikov, Y. I.; Regula, S. V.; Gao, Y.; Sudar- shah, T. S. Journal of Electronic Materials, 2003, 32(6): 505
  • 3Oussalah, S.; Djezzar, B.; Jerisian, R. Solid-State Electronics,2005, 49(10): 1617
  • 4Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; Smalley, R. E. Science, 1997, 275:1922
  • 5Lee, R. S.; Kim, H. J.; Fischer, J. E.; Thess, A.; Smalley, R. E. Nature, 1997, 388:255
  • 6Varghese, O. IC; Grimes, C. A. J. Nanoscience Nanotechnology, 2003, 3(4): 277
  • 7Wang, G.; Wang, Q.; Lu, W.; Li, J. H. J. Phys. Chem B, 2006, 110:22029
  • 8Jiu, J. T.; Isoda, S.; Wang, F. M.; Adachi, M. J. Phys. Chem B, 2006, 110:2087
  • 9Kim, H.; Lee, J.; Song, Y. J.; Choi, B. Y.; Kahng, S. J.; Kuk, Y. Thin Solid Films, 2004, 464-465:335
  • 10Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B. Adv. Mater., 2006, 18:2597

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部