期刊文献+

弹体侵彻干砂的数值模型

Numerical modeling of projectile penetration into dry sand
下载PDF
导出
摘要 基于砂粒的不可压缩性假设,利用球形空腔动态收缩模型和广义Mises强度准则推导了干砂的孔隙压密演化方程;根据Hugoniot冲击突跃条件和Grüneisen系数,推导了干砂考虑孔隙演化影响的状态方程;根据关联流动法则,得到了大变形时砂的弹塑性应力应变关系;基于动力有限元计算平台,采用上述模型分析了弹体高速侵彻干砂的作用过程。结果表明,该模型能够表征高速侵彻时砂的孔隙演化对应力应变状态的反向影响,能够较准确地反映高速侵彻作用下干砂的动力响应过程。 Assuming that sand grains are incompressible, a compaction equation for porous dry sand was derived by applying the dynamic systolic model of a spherical cavity and the generalized Mises strength criterion. Based on the Hugoniot jump condition and the Grtineisen parameter, the equation of state for dry sand was given by considering porous compaction. According to the associated flow rule, the elasto-plastic stress-strain relationships of dry sand under large deformation were obtained. By means of the dynamic finite element computing method, the above models were used to analyze the penetration process of dry sand by a projectile. The results show that the models can reflect the re- verse influence of sand pore evolution on the stress-strain state in the high-velocity penetration process, and can accurately describe the dynamic response of dry sand under high-velocity penetration.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2015年第5期633-640,共8页 Explosion and Shock Waves
基金 中国博士后科学基金项目(2013M541675 2014M552688) 爆炸冲击防灾减灾国家重点实验室开放基金项目(DPMEIKF201301)
关键词 爆炸力学 孔隙压密 有限元 干砂 高速侵彻 mechanics of explosion porous compaction finite element dry sand high-velocity penetration
  • 相关文献

参考文献19

  • 1Allen W A, Mayfield E B,Morrison H L. Dynamics of a projectile penetration sand[J]. Journal of Applied Phys-ics, 1957,28(3):370-376.
  • 2Allen W A,Mayfield E B,Morrison H L. Dynamics of a projectile penetration sand: Part U [J]. Journal of Ap-plied Physics, 1957,28(11):1331-1335.
  • 3Mesri G, Feng T W,Benak J M. Post densification penetration resistance of clean sands[J]. Journal of Geotechni-cal Engineering, 1990,116(7) : 1095-1115.
  • 4Goldman D I,Umbanhowar P. Scaling and dynamics of sphere and disk impact into granular media[J]. PhysicalReview E, 2008,77(2):021308.
  • 5Collins A L,Addiss J W,Walley S M,et al. The effect of nose shape on the internal flow fields during ballisticpenetration of sand[J]. International Journal of Impact Engineering,2011,38(12) :951-963.
  • 6Borg J P,Morrissey M P, Perich C A,et al. In situ velocity and stress characterization of a projectile penetrating asand target: Experimental measurements and continuum simulations[J]. International Journal of Impact Engineer-ing, 2013,51(1):23-35.
  • 7Forrestal M J, Norwood F R, Longcope D B. Penetration into targets described by locked hydrostats and shearstrength[J], International Journal of Solids and Structures, 1981,17(9) :915-924.
  • 8Forrestal M J, Luk V K. Penetration into soil targets [J]. International Journal of Impact Engineering, 1992 ,12(3):427-444.
  • 9Boguslavskii Y,Drabkin S,Juran I,et al. Theory and practice of projectile, s penetration in soils[J]. Journal ofGeotechnical Engineering, 1996,122(10) :806-812.
  • 10Salgado R,Mitchell J K,Jamiolkowski M. Cavity expansion and penetration resistance in sand[J]. Journal ofGeotechnical and Geoenvironmental Engineering, 1997,123(4) :344-354.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部