期刊文献+

基于人眼视觉特性与SVM的视频质量评估模型

Human eye system and SVM-based video quality assessment model
下载PDF
导出
摘要 建立一个精确、有效的视频质量评估模型是当前多媒体研究的热点问题。通过分析现有无参考视频质量评价技术的优缺点,文中提出了基于人眼视觉特性(human visual system,HVS)与SVM的视频质量评估模型——HVQAM模型。该模型在采用支持向量机对帧图像进行质量评估的基础上,创新地采用人眼视觉特性对帧内区域图像进行加权平均。通过实验对HVQAM模型进行了测试,测试结果表明文中所提出的模型与主观评估结果相比较,相似度更高,而CPU及内存占用率较低。 It has become a hot issue in current researches that how to establish an effective model to evaluate video quality accurately in real time. By analyzing the advantages and disadvantages of existing without reference video quality evaluation technologies,this paper proposes a human eye system and SVMbased video quality assessment model-HVQAM. The model can evaluate the frame image quality based on support vector machine and apply the human visual characteristics of innovation to weighted average of frame image area. The HVQAM is tested by an experiment. Experimental results show that evaluation results of the presented model and subjective evaluation results are more similar,and the CPU and memory usage rate of the model is lower.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2015年第5期60-66,共7页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60973140 61170276 61373135) 江苏省高校自然科学研究重大项目(12KJA520003) 江苏省产学研项目(BY2013011) 江苏省科技型企业创新基金(BC2013027)资助项目
关键词 视频质量评估 人眼视觉特性 加权检测 支持向量机 video quality assessment human visual system weighted detection support wector machine
  • 相关文献

参考文献11

  • 1ANISH M, ANUSH K M, ALAN C B. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing ,2012,21 ( 12) :4695 - 4708.
  • 2CHEN C, SONG L , WANG X, et al. No-reference video quality assessment on mobile devices[C]// Proceedings of IEEE International Symposium on Broadband Multimedia Systems and Broadcasting ( BMSB) . 2013 : 1 - 6.
  • 3SOGAARDJ , FORCHHAMMER S, KORHONENJ. No-reference video quality assessment using MPEG analysis[C]//Picture Coding Symposium. 2013: 161 - 164.
  • 4ZHU K , HIRAKAWA K, ASARI V, et al. A no-reference video quality assessment based on Laplacian pyramids[C]//20th IEEE International Conference on Image Processing(ICIP). 2013 :49 - 53.
  • 5ZHANG Z, SHI H. No-reference video quality assessment based on temporal information extraction[C]//2nd IEEE International Symposium on Instrumentation and Measurement, Sensor Network and Automation ( IMSNA). 2013: 925 -927.
  • 6HASAN M M, ARNOLDJ F, FRATER M R. No-reference quality assessment of 3D videos based on human visual perception[C]//IEEE International Conference on 3D Imaging(lC3D).2014:1-6.
  • 7AABED M A, ALREGIB G. No-reference quality assessment of HEVC videos in loss-prone networks[C]// IEEE International Conference on Acoustics, Speech and Signal Processing ( ICASSP). 2014 :2015 - 2019.
  • 8ZHU K, LI C, ASARI V, et al. No-reference video quality assessment based on artifact measurement and statistical analysis[J].IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25 (4) : 533 - 546.
  • 9HU X, LIUJ, LIJ , et al. A hybrid no-reference video quality assessment based on region of interest[ C]// IEEE International Symposium on Wireless Personal Multimedia Communications( WPMC). 2014: 1 -5.
  • 10XUJ, YE P, LIU Y, et al. No-reference video quality assessment via feature learning[C] //International Conference on Image Processing. 2014.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部