摘要
本文给出了非负矩阵Perron根的一些新界值.设A为任意非负矩阵,ρ为其Perron根,f(A)为任意满足f(A)≥0的A的多项式,行和非零,则min1≤i≤n(r_i(A·f(A)))/(r_i(f(A)))≤ρ≤max1≤i≤n(r_i(A·f(A)))/(r_i(f(A)))该结果推广了相关文献的结果,且可通过选择合适的多项式得到更精确的界值.
Some bounds for the Perron root p of nonnegative matrices are established.Let A be any nonnegative matrix,f(A) a polynomial of A satisfied f(A) 0 and all the row sums of f(A) be nonzero,then min1≤i≤n(r_i(A·f(A)))/(r_i(f(A)))≤ρ≤max1≤i≤n(r_i(A·f(A)))/(r_i(f(A))) This result is a generalized form of bounds in paper[4-7]and can improve the estimation of p by choosing appropriate polynomials.
出处
《数值计算与计算机应用》
CSCD
2015年第3期161-165,共5页
Journal on Numerical Methods and Computer Applications
基金
四川省教育厅青年基金项目(13ZB0033)
关键词
PERRON根
非负矩阵
上下界
Perron root
nonnegative matrix
lower bound
upper bound