摘要
本文针对代数多重网格(algebraic multigrid,AMG)并行实现中的稀疏矩阵-向量乘,建立了稀疏矩阵新的分布和数据存储模式,提出了一类具有最小通信量以及隐藏通信的新稀疏矩阵-向量乘并行算法,并实现了基于K-循环迭代的求解阶段并行算法.针对现代多核处理器,结合细粒度的并行编程模型,实现了MPI+OpenMP混合编程并行算法.通过同hypre软件包测试比较,在深腾7000集群上求解三维Laplace方程并行规模达到512核心时,并行求解阶段运行时间较hypre(high performance preconditioners)软件包提高了56%,在元集群上提高了39%,验证了算法的有效性.
This paper shows the study on sparse matrix-vector multiplication in AMG,this paper establishes a new sparse matrix distribution and data storage mode,and propose a new sparse matrix-vector parallel algorithm with minimum traffic and hidden communication,and implements the parallel algorithm of the solution phase with K-cycle iteration.For modern multi-core processors,combine with the fine-grained parallel programming model to achieve a hybrid MPI+OpenMP parallel programming algorithm.Numerical experiment indicates that compare with the hypre(high performance preconditioners)software,in Deepcomp 7000 cluster when MPI process reaches 512 cores to solve the three-dimensional Laplace equation,the run time of solve phase using K-cycle obtains 56%faster than hypre software with V-cycle and in Era cluster obtains 39%faster than hypre with V-cycle.
出处
《数值计算与计算机应用》
CSCD
2015年第3期197-214,共18页
Journal on Numerical Methods and Computer Applications
基金
国家自然科学基金重大研究计划(No.91430214)
国家重点基础研究发展计划(973)(No.2011CB309702)
国家高技术研究发展计划(863)(No.2012AA01A309)
数学工程与先进计算国家重点实验室开放基金(No.2014A03)资助
关键词
代数多重网格
预处理过程
数据存储格式
计算与通信重叠
algebraic multigrid
pre-processing
data storage format
computing and communication overlap