期刊文献+

基于计算与通信重叠的稀疏矩阵-向量乘积及其在AMG中的应用 被引量:1

SPARSE MATRIX-VECTOR MULTIPLY ALGORITHM BASED ON OVERLAPPING COMPUTATION AND COMMUNICATION AND APPLICATION IN AMG
原文传递
导出
摘要 本文针对代数多重网格(algebraic multigrid,AMG)并行实现中的稀疏矩阵-向量乘,建立了稀疏矩阵新的分布和数据存储模式,提出了一类具有最小通信量以及隐藏通信的新稀疏矩阵-向量乘并行算法,并实现了基于K-循环迭代的求解阶段并行算法.针对现代多核处理器,结合细粒度的并行编程模型,实现了MPI+OpenMP混合编程并行算法.通过同hypre软件包测试比较,在深腾7000集群上求解三维Laplace方程并行规模达到512核心时,并行求解阶段运行时间较hypre(high performance preconditioners)软件包提高了56%,在元集群上提高了39%,验证了算法的有效性. This paper shows the study on sparse matrix-vector multiplication in AMG,this paper establishes a new sparse matrix distribution and data storage mode,and propose a new sparse matrix-vector parallel algorithm with minimum traffic and hidden communication,and implements the parallel algorithm of the solution phase with K-cycle iteration.For modern multi-core processors,combine with the fine-grained parallel programming model to achieve a hybrid MPI+OpenMP parallel programming algorithm.Numerical experiment indicates that compare with the hypre(high performance preconditioners)software,in Deepcomp 7000 cluster when MPI process reaches 512 cores to solve the three-dimensional Laplace equation,the run time of solve phase using K-cycle obtains 56%faster than hypre software with V-cycle and in Era cluster obtains 39%faster than hypre with V-cycle.
出处 《数值计算与计算机应用》 CSCD 2015年第3期197-214,共18页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金重大研究计划(No.91430214) 国家重点基础研究发展计划(973)(No.2011CB309702) 国家高技术研究发展计划(863)(No.2012AA01A309) 数学工程与先进计算国家重点实验室开放基金(No.2014A03)资助
关键词 代数多重网格 预处理过程 数据存储格式 计算与通信重叠 algebraic multigrid pre-processing data storage format computing and communication overlap
  • 相关文献

参考文献33

  • 1Ruge J W and Stüben K.Algebraic multigrid(AMG)[J].in Multigrid Methods,S.F.McCormick,ed.,vol.3 of Frontiers in Applied Mathematics,SIAM,Philadelphia,PA,1987,73-130.
  • 2Vaněk P,Mandel J and Brezina M.Algebraic multigrid based on smoothed aggregation for second and fourth order elliptic problems[J].Computing,1996,56(3):79-196.
  • 3Notay Y.An aggregation-based algebraic multigrid method[J].Electronic transactions on numerical analysis,2010,37(6):123-146.
  • 4Hypre software and documentation available at https://computation.llnl.gov/casc/linear_solvers/sls_hypre.htm.
  • 5Falgout R D and Yang U M.hypre:a library of high performance preconditioners.In Sloot,P.,Tan.,C.,Dongarra,J.,and Hoekstra,A.,editors,Computational Science-ICCS2002Part Ⅲ,volume2331of Lecture Notes in Computer Science,pages632-41.Springer Berlin Heidelberg,(2002).Also available as LLNL Technical Report UCRL-JC-146175.
  • 6Stüben K.Algebraic Multigrid(AMG):An Introduction with Applications[M],GMD Report70,Nov,(1999),also available as an appendix in the book "Multigrid" by U.Trottenberg,C.W.Oosterlee,A.Schuller,Academic Press,2001,413-532.
  • 7Henson V E and Yang U M.BoomerAMG:a parallel algebraic multigrid solver and preconditioner[J].Applied Numerical Mathematics,2002,41(1):155-177.Also available as LLNL technical report UCRL-JC-141495.
  • 8Cleary A J,Falgout R D,Henson V E,Jones J E.Coarse-grid Selection for parallel Algebraic Multigrid[M].in Proceedings of the "fifth international symposium on solving irregularly structured problems in parallel",Lecture Notes in Computer Science1457,Springer-Verlag,New York,1998,104-115.
  • 9De Sterck H,Yang U M and Heys J.Reducing complexity in parallel algebraic multigrid preconditioners[J].SIAM Journal on Matrix Analysis and Applications,2006,27(4):1019-1039submitted,(2004).Also available as LLNL technical report UCRL-JRNL-206780.
  • 10Baker,Allison H,et al.Scaling hypre's multigrid solvers to100,000cores[M]//High-Performance Scientific Computing.Springer London,2012:261-279.

二级参考文献41

  • 1徐小文,莫则尧.一种新的并行代数多重网格粗化算法[J].计算数学,2005,27(3):325-336. 被引量:7
  • 2[2]Y.Sadd, Iterative methods for Sparse Linear Systems,PWS Publishing Company, 1995.
  • 3[3]T.F.Chan, J.Xu,and L.Zikatanov, An agglomeration multigrid method for unstructured grids.Proceedings of 10-th International conference on Domain Decomposition methods, edit by J.Mandel,C.Farhat, and X.J.Cao, AMS, Providence, RI.
  • 4[4]J.W.Ruge and K.Stuben Algebraic mutigrid, Multigrid methods, SIAM, 1987.
  • 5[5]Bank,J.Xu, An algorithm for coarsing unstructured meshes, Numer. Math.,73:1(1996), 1-36.
  • 6[6]J.Mandel, Denver, CO, M.Brezina, Boulder, CO,and P.Vanek, Los Angeles, CA, Energy optimization of algebraic multigrid bases, Computing 62,(1999) 205-228.
  • 7[9]Shu shi, Xu jinchao, Xiao yingxiong and L.Zikatanov, Algebraic Multigrid Method on Lattice Block Materials, Recent Progress in Computional and Applied PDEs, Edited by Tony. F.Chan, et,al.Boston/London, (2002) 287-307.
  • 8[10]P.Vanek, J.Mandel, and M.Brezina, Algebraic multigrid on unstructured meshes,UCD/CCM Report 34, Center for Computational Mathematics, University of Colorado at Denver, December 1994.
  • 9A Brandt, S F McCormick, and J W Ruge, Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations, Institute for Computational Studies, POB 1852, Fort Collins, Colorado, 1982.
  • 10A Brandt, S F McCormick, and J.W.Ruge, Multigrid methods for differential eigenproblems, SIAM J Sci Star Comput, 4(1983), 244-260.

共引文献36

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部