期刊文献+

一维分子束外延方程线性部分求解及数值模拟

THE THEORETICAL SOLUTION AND NUMERICAL SIMULATION OF THE LINEAR PART IN ONE-DIMENSION MBE EQUATION
原文传递
导出
摘要 分子束外延(molecular beam epitaxy,简称MBE)是一种在晶体基片上生长高质量的晶体薄膜的新技术,本文主要研究一维MBE方程线性部分的性质.首先,用分离变量法导出方程的理论解并证明了的解的存在性.其次,利用Fourier谱方法从数值上研究方程的解的性质,同时进行了稳定性、收敛性、误差分析.由于方程本身含有稳定项和非稳定项,且其中的未知参量决定了稳定项所占权重,故参量的大小影响着解的稳定性.数值分析结果显示,当参量较小时方程的解是不稳定的,随着时间增长,振幅最终会增大至无穷;而当参量较大时,方程的解是稳定的,随着时间增长,振幅最终趋于0.这与理论分析的结果也是一致的. Molecular Beam Epitaxy (MBE) is a new method used to grow crystal thin films in high vacuum or ultra-high vacuum. The main purpose of this work is to study the properties of the linear part in one-dimension MBE equation. Firstly, the separation of variables is used to get theoretical solution of the equation; meanwhile the existence of the solution is proved. Next, this essay presents some of the fundamental ideas of Fourier spectral method, which are used to examine numerical solution. Then the stability, convergence and error analysis of Fourier spectral method are discussed. Since the equation includes both stable term and unstable term and the unknown term determines the weight of stable term, the unknown term determines the stability of the whole equation. The output of numerical analysis proves that, the solution is unstable when the parameter is small and as time goes by, its amplitude will increase to infinity; when the parameter is large enough, the solution is stable and as time goes by, and its amplitude gradually reduces to O. This result is also consistent with theoretical analysis.
出处 《数值计算与计算机应用》 CSCD 2015年第3期225-240,共16页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金项目(11261160486 11471046) 教育部新世纪优秀人才支持计划项目(NCET-12-0053)
关键词 分子束外延 MBE方程 分离变量法 FOURIER谱方法 Molecular Beam Epitaxy MBE Equation Separation of Variables Fourier Spectral Method
  • 相关文献

参考文献12

  • 1高桥庆. 分子束外延及其应用[J]. 电子材料, 1974, 13(2): 132-138.
  • 2Li B and Liu J G. Thin film epitaxy with or without slope selection[J]. European J. Appl. Math., 2003, 14: 713-743.
  • 3Xu C J and Tang T. Stability analysis of lar ge time-stepping methods for epitaxial growth models[J]. SIAM J. Numer. Anal., 2006, 44: 1759-1779.
  • 4He Y N, Liu Y X, and Tang T. On large time-stepping methods for the Cahn-Hilliard equation[J]. Appl. Numer. Math., 2007, 57: 616-628.
  • 5Zhu J, Chen L Q, and Tikare V. Coarsening kinetics from a variable-mobility Cahn-Hilliard equations: Application of a semi-implicit Fourier spectral method [J]. Comput. Phys. Comm., 1999, 60: 3564-3572.
  • 6Qiao Z H, Sun Z Z, Zhang Z R. The Stability and Convergence of Two Linearized Finite Difference Schemes for the Nonlinear Epitaxial Growth Model[J]. Numer. Methods Partial Diff. Eq., 2012, 28: 1893-1915.
  • 7Cheng Y Z, Kurganov A, Qu Z L, and Tang T. Fast and stable explicit operator splitting methods for phase-field models[J]. J. Comput. Phys., submitted.
  • 8Li X, Qiao Z H, and Zhang H. Convergence of a fast explicit operator splitting method for the molecular beam epitaxy model[J]. SIAM Numer. Anal., submitted.
  • 9胡建伟 汤怀民.微分方程数值方法[M].北京:科学出版社,1999..
  • 10Shen J. Spectral Methods: Algorithms, Analysis and Applications[M]. New York: Springer, 2010.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部