摘要
本文讨论了一笔基金M通过存款或购国库券,在保证n年末仍保留原基金总额的情况下,使每年获得最高奖金额u的使用计划。考虑将该笔基金分为n+1份,分别为x0,x1,x2…xn。经过存款或购国库券n年后,x1,x2…xn的本息作为当年的奖金,保证n年末仍保留原基金总额。通过分析计算建立了获得最高奖金额的分配方案模型,利用Maple软件求出u的值,得到基金的最佳使用计划。
How to acquire the highest amount of prize is discussed by using a sum of mon ey to deposit or purchase national bounds in order to keep original total amount of money at the end of n years.This sum o f money can be divided into n +1which a re x 1 ,x 2 ,...x n ,x 0 .After n years of depositing or purchasing national bounds,the capital an d interest of x 1 ,x 2 ,...x nare regarded as the prize of that year.Xn keeps total amount of original foundation at the end of n years.The alloca tion model of x1,x 2 ,...x n ,x 0 of the highest amount of prize is buil t by calculation.Optimal applicatio n plan of foundation is arrived at by u sing Maple software to get the value o f x 1 ,x 2 ,...x n ,x 0 and u.
出处
《重庆商学院学报》
2002年第4期37-40,共4页
Journal of Chongqing Institute of Commerce
关键词
基金
奖金额
存购方案
使用计划
foundation
amount of prize
depositing and purchasing plan
applicati on plan