期刊文献+

IgG Fc基因增强乙型脑炎DNA疫苗细胞免疫效应的分析 被引量:1

Cellular immune effect of DNA vaccine derived from Japanese encephalitis virus enhanced by immunoglobulin G Fc fragment
原文传递
导出
摘要 目的评价IgG Fc段编码基因不同构建方式对乙型脑炎(JE)DNA疫苗细胞免疫应答的影响。方法以套式RT-PCR法获取BALB/c鼠IgG Fc编码基因,构建含乙型脑炎病毒(JEV)pr ME蛋白与IgG Fc编码基因以及单纯IgG Fc编码基因重组质粒,分别命名pJME/IgG Fc和pIgG Fc,以不同免疫原肌注免疫BALB/c小鼠,经流式细胞仪检测不同免疫原免疫鼠后脾T淋巴细胞亚群及Th细胞内细胞因子(IFN-γ、IL-4)变化,乳酸脱氢酶(Lactate dehydrogenase,LDH)法测定细胞毒性T淋巴细胞(Cytotoxic T lymphocytes,CTL)活性。数据进行单因素方差分析。结果 pJME/IgG Fc组CD4+T淋巴细胞比例为(66.64±5.84)%,明显高于pJME+pIgG Fc、pJME、JE灭活疫苗和pc DNA3.1(+)组(P<0.05),pJME+pIgG Fc组CD4+T淋巴细胞比例(60.55±2.09)%,高于pJME组(52.86±1.92)%,也高于JE灭活疫苗组(55.77±1.62)%(P<0.05),pc DNA3.1(+)组CD4+T淋巴细胞比例为(37.82±4.93)%,明显低于其他组(P<0.05);pJME/IgG Fc与pJME+pIgG Fc免疫组CD8+T细胞比例较空载体pc DNA3.1(+)及灭活疫苗组升高(P<0.05)。pJME/IgG Fc免疫组CTL活性为(46.92±1.97)%,明显高于其它组(P<0.05)。pJME/IgG Fc、pJME+pIgG Fc免疫组IFN-γ+CD4+T淋巴细胞比例分别为(37.90±4.79)%、(21.53±4.61)%,明显高于其它组(P<0.05)。结论相对于pJME+pIgG Fc联合免疫组,pJME/IgG Fc融合质粒免疫组能够诱导更强的细胞免疫反应。 Objective To investigate the specific cellular immune effect induced by plasmid DNA vaccine derived fromJapanese encephalitis virus(JEV)with various forms of IgG Fc gene. Methods Gene encoding IgG Fc was amplified bynested-RT-PCR technique from BALB/c murine spleen cells. Genetic fusion of pr ME protein and IgG Fc gene,and pure IgG Fc gene were subcloned respectively,named as pJME/IgG Fc and pIgG Fc . For the immunization of the BALB/c mice,the Tlymphocyte subsets and the levels of Th cells intracellular cytokine IFN-γ and IL-4 in the splenic cells suspension of the micewere evaluated by flow cytometric analysis. The CTLs activity were assessed by lactic dehydrogenase(LDH)release method.The data were analyzed by single factor analysis of variance. Results The percentage of CD4+T cells in the pJME/IgG Fc vaccinated groupwas(66.64±5.84)%,significantly higher than other groups(P〈0.05). The percentage of CD4+T cells in thepJME+pIgG Fc vaccinated groups were(60.55±2.09)%,higher than that in the pJME(52.86±1.92)% and JE inactivatedvaccine(55.77±1.62)%vaccinated group(P〈0.05). The percentage of CD4+T cells in the pc DNA3.1(+)groupwas(37.82±4.93)%,lower than other groups(P〈0.05). The percentage of CD8+T cells in the pJME/IgG Fc and pJME+pIgG Fc vaccinatedgroups were higher than that in the empty plasmid and JE inactivated vaccine vaccinated groups(P〈0.05). The CTL activitiesinduced by pJME/IgG Fc vaccinated groupwere(46.92±1.97)%,higher than other groups(P〈0.05). The percentage of IFN-γ+CD4+T cells from the pJME/IgG Fc , pJME + pIgG Fc vaccinated groups were(37.90 ± 4.79)% and(21.53 ± 4.61)%respectively, significantly higher than that in other groups(P〈0.05). Conclusion Compared with pJME+pIgG Fc combinedimmunization group,pJME/IgG Fc fusion plasmid immunization groupwould induce much more intense cellular immuneresponse.
出处 《中国热带医学》 CAS 2015年第10期1161-1164,共4页 China Tropical Medicine
基金 辽宁省博士科研启动基金项目计划(No.20131147)
关键词 日本脑炎病毒 DNA疫苗 IGG FC段 树突状细胞 Japanese encephalitis virus DNA vaccine IgG Fc fragment Dendritic cells
  • 相关文献

参考文献11

  • 1Wu CJ, Li TL,Huang HW,et al. Development of an effective Japanese encephalitis cirus-specific DNA vaccine[J]. Microbes Infect, 2006, 8(11):2578-2586.
  • 2Roehrig JT. Antigenic structure of flavivirus proteins[J].Adv Virus Res, 2003, 59:141-175.
  • 3李喜梅,周言,翟永贞,马力,冯国和.乙脑病毒prME蛋白与BALB/c鼠IgG Fc段编码基因联合构建DNA免疫研究[J].中华微生物学和免疫学杂志,2008,28(7):634-638. 被引量:2
  • 4Zhai YZ, Zhou Y, Ma L, et al. The dominant roles of ICAM-1-encoding gene in DNA vaccination against Japanese encephalitisvirus are the activation of dendritic cells and enhancement of cellular immunity[J]. Cell Immunol, 2013, 281(1):1-10.
  • 5Regnault A, Lankar D, Lacabanne V, et al. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization[J]. J Exp Med, 1999, 189 (2):371-380.
  • 6Amigorena S, Lankar D, Briken V, et al. Type II and III receptors for immunoglobulin G (IgG) control the presentation of different T cell epitopes from single IgG-complexed antigens[J]. J Exp Med, 1998, 187(4):505-515.
  • 7Baker K, Rath T, Lencer WI, et al. Cross-presentation of IgG-containing immune complexes[J]. Cell Mol Life Sci, 2013, 70(8):1319-1334.
  • 8Gil M, Bieniasz M, Wierzbicki A, et al. Targeting amimotope vaccine to activating Fcgamma receptors empowers dendritic cells to prime specific CD8+ T cell responses in tumor-bearing mice[J]. J Immunol, 2009, 183(10):6808-6818.
  • 9Bitsaktsis C, Iglesias BV, Li Y, et al. Mucosal immunization with an unadjuvanted vaccine that targets Streptococcus pneumoniae PspA to human Fcgamma receptor type I protects against pneumococcal infection through complement- and lactoferrin-mediated bactericidal activity[J]. Infect Immun, 2012, 80(3):1166-1180.
  • 10He X, Li X, Liu B, et al. Down-regulation of Treg cells and up-regulation of TH1/TH2 cytokine ratio were induced by polysaccharide from Radix Glycyrrhizae in H22 hepatocarcinoma bearing mice[J]. Molecules, 2011, 16(10):8343-8352.

二级参考文献11

  • 1李喜梅 冯国和.DNA疫苗抗原递呈机制研究进展[J].国际流行病学与传染病学杂志,2007,34(3):186-188.
  • 2Rock KL, Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol Rev, 2005, 207: 166-183.
  • 3Yoshikawa T, Imazu S, Gac JQ, et al. Augmentation of antigenspecific immune responses using DNA-fusogenic liposome vaccine. Biochem Biophys Res Commun, 2004, 325 (2):500-505.
  • 4Zhang L, Widera G, Rabussay D. Enhancement of the effectiveness of electroporation-augmented cutaneous DNA vaccination by a particulate adjuvant. Bioelectrochemistry, 2004, 63 (1-2): 369- 373.
  • 5Frauenschuh A, Devico AL, Lim SP, et al. Differential polarization of immune responses by co-administration of antigens with chemokines. Vaccine, 2004, 23(4): 546-554.
  • 6Kim TW, Hung CF, Boyd DA, et al. Enhancement of DNA vaccine potency by coadministration of a tumor antigen gene and DNA encoding serine protease inhibitor-6. Cancer Res, 2004, 64 ( 1 ) : 400-405.
  • 7Sun W, Qian H, Zhang X, et al. Induction of protective and therapeutic antitumour immunity using a novel turnout-associated antigen-specitlc DNA vaccine. Immunol Cell Biol, 2006, 84 ( 5 ) : 440-447.
  • 8Kaur R, Sachdeva G, Vrati S. Plasmid DNA immunization against Japanese encephalitis virus: immunogenicity of membrane-anchored and secretary envelope protein. J Infect Dis, 2002, 185 (1): 1-12.
  • 9Feng GH, Liu N, Zhou Y, et al. Immunologic analysis induced by DNA vaccine encoding E protein of Beijing-1 strain derived from Japanese encephalitis virus. Intervirology, 2007, 50 ( 2 ) : 93-98.
  • 10周言,张琳,翟永贞,李喜梅,王占英,冯国和.不同途径接种乙脑病毒prME蛋白编码基因DNA疫苗所致BALB/c鼠的细胞免疫[J].中国医科大学学报,2007,36(6):625-627. 被引量:4

共引文献1

同被引文献13

  • 1BHATIA R, ORTEGA L, DASH A, et al. Vector-borne diseases in South-East Asia: burdens and key challenges to be addressed[J]. WHO South-East Asia J Public Health, 2014, 3(1): 2-4.
  • 2NOLAN N A, CRAIG M E, LAHRA M M, et al. Survival after pulmonary edema due to enterovirus 71 encephalitis[J]. Neurology, 2003, 60(10): 1651-1656.
  • 3MARSH M, HELENIUS A. Virus entry: open sesame[J]. Cell, 2006, 124(4): 729-740.
  • 4SCHELHAAS M. Come in and take your coat off - how host cells provide endocytosis for virus entry[J]. Cellular microbiology, 2010, 12 (10): 1378-1388.
  • 5CONNER S D, SCHMID S L. Regulated portals of entry into the cell [J]. Nature, 2003, 422(6927): 37-44.
  • 6COYNE C B, KIM K S, BERGELSON J M. Poliovirus entry into human brain microvaseular cells requires receptor- induced activation of SHP-2[J]. EMBO Journal, 2007, 26(17): 4016-4028.
  • 7ACOSTA E G, CASTILLA V, DAMONTE E B. Alternative infectious entry pathways for dengue virus serotypes into mammalian cells[J]. Cellular Microbiology, 2009, 11(10): 1533-1549.
  • 8RACANIELLO V R. One hundred years of poliovirns pathogenesis[J]. Virology, 2006, 344(1): 9-16.
  • 9CHU J, LEONG P, NG M. Analysis of the endocytic pathway mediating the infectious entry of mosquito-borne flavivirus West Nile into Aedes albopictus mosquito (C6/36) cells[J]. Virology, 2006, 349 (2): 463-475.
  • 10MERCER J, SCHELHAAS M, HELENIUS A. Virus entry by endocytosis[J]. Annual review of biochemistry, 2010, 79(1): 803-833.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部