期刊文献+

核级304不锈钢超薄壁三通液压胀形模拟及实验 被引量:2

Hydroforming simulation and experiment on SS 304 thin-walled T-shapes
下载PDF
导出
摘要 对304不锈钢超薄壁三通的液压成形工艺过程进行有限元模拟,研究液压成形过程中冲头挤压速度、内压和圆角半径对成形结果的影响规律。结果表明,支管顶部壁厚值最小,主管端部以及过渡圆角半径处壁厚值最大;随着挤压速度的增大,三通支管高度先增加后逐渐减小;内压不足容易导致起皱,内压过大则支管顶部严重减薄甚至开裂;随着过渡圆角半径的增加,最大支管高度明显增加,壁厚均匀性改善。实验结果表明,成形内压和轴向进给速度匹配较为合理时,可以成形得到既不起皱也不开裂的不锈钢超薄壁三通管件。 The effects of punch velocity,internal pressure and fillet radius on the hydroforming results were studied with the FE method for SS304thin-walled T-shapes.The simulation results showed that,the top part of the branch obtained the minimum wall thickness,while the ends of the main pipe and transition fillets area had the maximum wall thickness.With the increase of the axial velocity,the height of branch pipe increased at first,then decreased gradually.Insufficient internal pressure easily resulted in wrinkles,but too high internal pressure led to severely thinning or even cracks at the top of branch.With the increase of transition fillet radius,the maximum height of the branch pipe increased evidently and the uniformity of wall thickness was improved.The experimental results demonstrated that thin-walled T-shapes without any wrinkles or cracks could be fabricated by suitable match of processing parameters especially internal pressure and axial feed velocity.
出处 《塑性工程学报》 CAS CSCD 北大核心 2015年第5期76-81,124,共7页 Journal of Plasticity Engineering
基金 国家自然科学基金资助项目(51205196) 中国博士后科学基金资助项目(2013M531347) 教育部博士点基金资助项目(20123218120029) 江苏省重大成果转化资助项目(BA2012124) 江苏高校优势学科建设工程资助项目
关键词 薄壁三通 液压胀形 数值模拟 塑性成形 Thin-walled T-shapes hydroforming numerical simulation plastic forming
  • 相关文献

参考文献16

  • 1BB.格拉西莫夫,A.V萸纳霍夫.核工程材料[M].北京:原子能出版社,1987.
  • 2Leber H J, Niffenegger M,Tirbonod B. Mierostructural aspects of low cycle fatigued austenitic stainless tube and pipe steels[J]. Materials Characterization, 2007. 58.. 1006-1015.
  • 3Kawaguchi Y, Nakamura Y, Satoru Y. Fatigue damage evaluation of stainless steel pipes in nuclear power plants using positron annihilation lineshape analysis [J]. Journal of the Japan Institute of Metals, 2002.66 .. 740-744.
  • 4Ting K. The evaluation of intergranular stress corro- sion cracking problems of stainless steel piping in Tai wan BWR 6 nuclear power plant[J]. Nuclear Engineer- ing and Design, 1999. 191 : 245-254.
  • 5Dohmann F, Hartl C. Hydroforming-a method to manu- facture light-weight parts[J]. Journal of Materials Pro- cessing Technology, 1996.60 .. 669-676.
  • 6Dohmann F, Hartl C. Tube hydroforming- research and practical application[J]. Journal of Materials Process ing Technology, 1997.71 .. 174-186.
  • 7Ahmetoglu M, Altan T. Tube hydroforming state-of- the-art and future trend[J]. Journal of Materials Pro- cessing Technology, 2000. 98 25-33.
  • 8Yang J B,Jeon B H,Oh S I. The tube bending technol- ogy of a hydroforming process for an automotive part [J]. Journal of Materials Processing Technology, 2001. 111:175-181.
  • 9Koc M,Altan T. An overall review of the tube hydro- forming (THF) technology [J]. Journal of Materials Processing Technology, 2001. 108 : 384-393.
  • 10Ko M. Hydroforrning for advanced manufacturing [M]. Woodhead Publishing, 2008.

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部