期刊文献+

基于评论质量的多文档文本情感摘要 被引量:2

Quality-based Multi-document Opinion Summarization
下载PDF
导出
摘要 任务旨在对带有情感的文本数据进行浓缩、提炼进而产生文本所表达的关于情感意见的摘要,用以帮助用户更好地阅读、理解情感文本的内容。该文主要研究多文档的文本情感摘要问题,重点针对网络上存在的同一个产品的多个评论进行摘要抽取。在情感文本中,情感相关性是一个重要的特点,该文将充分考虑情感信息对文本情感摘要的重要影响。同时,对于评论语料,质量高的评论或者说可信度高的评论可以帮助用户更好的了解评论中所评价的对象。因此,该文将充分考虑评论质量对文本情感摘要的影响。并且为了进行关于文本情感摘要的研究,该文收集并标注了一个基于产品评论的英文多文档文本情感摘要语料库。实验证明,情感信息和评论质量能够帮助多文档文本情感摘要,提高摘要效果。 Opinion summarization aims to concentrate and refine the text data so as to generate a summary of the text regarding the expressed opinion. It helps users reading and understanding the content of the opinion text. This study focuses on multi-document opinion summarization where the main task is to generate a summary given amounts of reviews towards the same product. Opinion relevance is an important feature for opinion text, which is considered in our opinion summarization method. Meanwhile,users can better understand the objects that mentioned in the re- views by the help of high quality reviews or high credibility reviews, which is also considered in our method. We further collect and annotate an English multi-document corpus on product reviews. Empirical studies on the corpus demonstrate that incorporating opinion and quality information is effective for multi -document opinion summariza- tion.
出处 《中文信息学报》 CSCD 北大核心 2015年第4期33-39,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金(61003155 60873150) 模式识别国家重点实验室开放课题基金资助项目
关键词 情感摘要 多文档 评论质量 opinion summarization multi-document reviews quality
  • 相关文献

参考文献27

  • 1Ganesan K,C Zhai,J Han.Opinosis:A Graph-Based Approach to Abstractive Summarization of Highly Redundant Opinions[C]//Proceeding of Coling-2008,2008.
  • 2Chen P,Dhanasobhon S,Smith M.All Reviews Are Not Created Equal:The Disaggregate Impact of Reviews on Sales on Amazon.com[J]//Carnegie Mellon University.
  • 3Soo-Min Kim,Patrick Pantel,Tim Chklovski,et al.Automatically Assessing Re-view Helpfulness[C]//Proceeding of EMNLP-2006,2006.
  • 4Hong Y,J Lu,J Yao,et al.What reviews are satisfactory:novel features for automatic helpfulness voting[C]//Proceeding of SIGIR-2012.
  • 5Luhn H P.The Automatic Creation of Literature Abstracts[C]//Proceedings of the IRE National Convention.
  • 6Lin C.Training a Selection Function for Extraction[C]//Proceedings of CIKM-1999.
  • 7Radev D,H Jing,M Stys,et al.Centroid-based Summarization of Multiple Documents[J].Information Processing and Management.2004,919-938.
  • 8Radev DR,K McKe-own.Generating natural language summaries from multiple on-line sources[J].Computational Linguistics,1998,24(3):1-31.
  • 9Celikyilmaz A,D Hakkani-Tur.Discovery of Topically Coherent Sentences for Extractive Summarization[C]//Proceeding of ACL-2011.
  • 10Pang B,Lillian L S.Vaithyanathan.Thumbs up sentiment classification using machine learning techniques[C]//Proceeding of EMNLP-2002.

二级参考文献80

  • 1秦兵,刘挺,李生.多文档自动文摘综述[J].中文信息学报,2005,19(6):13-20. 被引量:51
  • 2张妹,赵铁军,赵华,姚建民.基于内容相似度的文摘自动评测方法及其有效性分析[J].高技术通讯,2006,16(3):241-245. 被引量:8
  • 3Li J, Sun L, Kit C,et al. A query-focused multi-document summarizer based on lexical chains[C]//Proc, of Document Understanding Conference. 2007.
  • 4Wan X. Document-based HITS model for multi-document summarization [J]. Lecture Notes in Computer Science, 2008, 5351: 454-465.
  • 5Radev D, Jing H, Sty? M, et al. Centroid-based summarization of multiple documents[J]. Information Processing and Management, 2004, 40(6):919-938.
  • 6Hu M, Sun A, Lim E. Comments-oriented document summarization: understanding documents with readers' feedback [C]//Proc of SIGIR'08, NY USA: ACM, 2008: 291-298.
  • 7Brunn M. , Y. Chali, C.J. Pinchak. Text summarization using lexical chains[C]//the Proceedings of the Document Understanding Conference (DUC-2001) 2001 : 135-140.
  • 8Wan X, Yang J. Multi-document summarization using cluster based link analysis [C]//Proc of SIGIR' 08, NY USA: ACM, 2008: 299-306.
  • 9Wang D, Li T, Zhu S, Ding C. Multi-document summarization via sentence-level semantic analysis and symmetric matrix factorization[C]//Proc, of SIGIR' 08, NY USA: ACM, 2008. 307-314.
  • 10Zhou L, Hovy E. On the summarization of dynamically introduced information: Online discussions and blogs[C]//Proc, of AAAI'06 Spring Symposium on Computational Approaches to Analyzing Weblogs, Stanford, California: AAAI, 2006: 237-242.

共引文献66

同被引文献11

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部