期刊文献+

基于全局变量CRFs模型的微博情感对象识别方法 被引量:7

Sentiment Target Extraction Based on CRFs Global Variables for Chinese Micro-blog
下载PDF
导出
摘要 微博行文具有较大的自由性,其中情感对象识别是一个困难的问题,尤其是情感对象未显性出现情况下的情感对象识别,暂未发现有效解决方法。该文针对这一难题,结合中文微博的特点,提出了一种改进的条件随机场的模型。该模型把情感对象识别看作一个序列标记问题,通过在传统的CRF序列标记模型上增加情感对象的全局节点,有效地结合上下文信息、句法依赖以及情感词典,从而可以识别出微博中的情感对象。该方法的优势在于能够应用于情感对象未显性出现的情况。实验结果表明该方法比现有方法能更有效地识别出微博中的情感对象。 Owing to informal words and expressions widely used in micro-blogs, target recognition for the sentiment analysis of microblogs is difficult, especially when the targets are not clearly mentioned. An improved conditional random fields model is proposed to deal with this issue, treating sentiment target extraction as a sequence-labeling problem. Through adding global nodes, the contextual information, syntactic rules and opinion lexicon are consid- ered in the targets extraction. The major contribution of this method is that it can be applied to the texts in which the targets are mentioned in the sequence. Experimental results on the Sina microblog data demonstrate that this method outperforms the state-of-art methods.
出处 《中文信息学报》 CSCD 北大核心 2015年第4期50-58,66,共10页 Journal of Chinese Information Processing
基金 国家自然科学基金(61100148 61202269) 广东省自然科学基金(S2011040004804) 广东省科技计划项目(2010B050400011)
关键词 条件随机场 微博 情感对象识别 信息抽取 情感分析 CRFs microblog sentiment target information extraction sentiment analysis
  • 相关文献

参考文献19

  • 1Jiang L,Yu M,Zhou M,et al.Target-dependent Twitter Sentiment Classification[C]//Proceedings of ACL.2011:151-160.
  • 2Barbosa L,Feng J.Robust sentiment detection on twitter from biased and noisy data[C]//Proceedings of the 23rd International Conference on Computational Linguistics:Posters.Association for Computational Linguistics,2010:36-44.
  • 3Hu M,Liu B.Mining and summarizing customer reviews[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data mining.ACM,2004:168-177.
  • 4Hu M,Liu B.Mining opinion features in customer reviews[C]//Proceedings of AAAI.2004,4:755-760.
  • 5Popescu A M,Etzioni O.Extracting product features and opinions from reviews[M]//Natural language processing and text mining.Springer London,2007:9-28.
  • 6Scaffidi C,Bierhoff K,Chang E,et al.Red Opal:product-feature scoring from reviews[C]//Proceedings of the 8th ACM Conference on Electronic Commerce.ACM,2007:182-191.
  • 7Kobayashi N,Inui K,Matsumoto Y.Extracting Aspect-Evaluation and Aspect-Of Relations in Opinion Mining[C]//Proceedings of EMNLP-CoNLL.2007:1065-1074.
  • 8Stoyanov V,Cardie C.Topic identification for fine-grained opinion analysis[C]//Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1.Association for Computational Linguistics,2008:817-824.
  • 9Qiu G,Liu B,Bu J,et al.Opinion word expansion and target extraction through double propagation[J].Computational linguistics,2011,37(1):9-27.
  • 10Ma T,Wan X.Opinion target extraction in Chinese news comments[C]//Proceedings of the 23rd International Conference on Computational Linguistics:Posters.Association for Computational Linguistics,2010:782-790.

二级参考文献42

  • 1周俊生,戴新宇,尹存燕,陈家骏.基于层叠条件随机场模型的中文机构名自动识别[J].电子学报,2006,34(5):804-809. 被引量:112
  • 2倪茂树,林鸿飞.基于关联规则和极性分析的商品评论挖掘[C]//第三届全国信息检索与内容安全学术会议,2007:635-642.
  • 3徐冰,王山雨.句子级文本倾向性分析评测报告[C]//第二届中文倾向性分析评测会议(COAE2009)论文集.北京:第二届中文倾向性分析评测委员会,2009:69-73.
  • 4Pang B.,Lee L.,Vaithyanathan S.Thumbs Up Sentiment Classification Using Machine Learning Techniques[C]//Proceedings of EMNLP-2002.2002:79-86.
  • 5Li S.,Huang C.,Zong C. Multi-domain Sentiment Classification with Classifier Combination[J].Journal of Computer Science and Technology (JCST),2011,26(1):25-33.
  • 6Kim S.,Hovy E.Extracting Opinions,Opinion Holders,and Topics Expressed in Online News Media Text[C]//Proceedings of the ACL Workshop on Sentiment and Subjectivity in Text.2006:1-8.
  • 7Lafferty J.,McCallum A.,Pereira F. Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proceedings of IC-ML-2001.2001:282-289.
  • 8Jakob N.,Gurevych I.Extracting Opinion Targets in a Single and Cross-Domain Setting with Conditional Random Fields[C]//Proceedings of EMNLP-2010.2010:1035-1045.
  • 9Hu M,Liu B.Mining Opinion Features in Customer Reviews[C]//Proceedings of AAAI-2004.2004:755-760.
  • 10Titov I.,McDonald R.Modeling Online Reviews with Multi-grain Topic Models[C]//Proceedings of WWW-2008.2008:111-120.

共引文献47

同被引文献55

引证文献7

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部