期刊文献+

知识进化算法及其在关联分类中的应用 被引量:1

Knowledge Evolutionary Algorithm and Its Application for Associative Classification
下载PDF
导出
摘要 针对传统的关联分类算法在构造分类器的过程中需要多次遍历数据集从而消耗大量的计算、存储资源的问题,该文提出了一种基于知识进化算法的分类规则构造方法。该方法首先对数据集中的数据进行编码;然后利用猜测与反驳算子从编码后的数据中提取出猜测知识和反面知识;接着对提取出来的猜测知识进行覆盖度、正确度的计算,并根据不断变化的统计数据利用萃取算子将猜测知识与反面知识进行合理的转换。当得到的知识集中的知识的覆盖度达到预设的阈值时,该数据集中的知识被用来生成分类器进行分类。该方法分块读入待分类的数据集,极大地减少了遍历数据集的次数,明显减少了系统所需的存储空间,提高了分类器的构造效率。实验结果表明,该方法可行、有效,在保证分类精度的前提下,较好地解决了关联分类器构造低效、费时的问题。 Abstract.. To avoid the repeated exhaustive search of the data in classical associative classification approaches, a knowledge evolutionary algorithm based on evolutionary epistemology is proposed. Firstly, data in the data set is encoded. Secondly, the hypotheses knowledge and inaccuracte knowledge are gained by conjecture and refutation op- erator. Thirdly, the coverage and accuracy of the hypotheses and inaccurate knowledge are calculated. Then, an ex- traction operator is used to extract rules from library of inaccurate knowledge and to put them into hypotheses library. Finally, the knowledge obtained with this method was used to build a classifier. In this way, the dataset can be read in a computer partly and the whole times used for read in and read out were reduced largely. The results have shown that knowledge evolution algorithm can speed up the calculation process under the guarantee of similar accuracy of classification.
出处 《中文信息学报》 CSCD 北大核心 2015年第4期126-133,共8页 Journal of Chinese Information Processing
基金 中国博士后科学基金(2013M530534) 河北省教育厅科学研究计划(Z2014181) 国家自然科学基金(61272283 60873035) 河北省人社厅项目(JRS-2014-1103)
关键词 知识进化 猜测 反驳 关联分类 knowledge evolution conjecture refutation associative classification
  • 相关文献

参考文献12

  • 1Das S,Suganthan P N.Differential Evolution:A Survey of the State-of-the-Art [J].IEEE Transactions on Evolutionary Computation,2011,15(1):4-31.
  • 2Ashlock D.Computational Intelligence in Bioinformatics [J].Computational Intelligence Magazine,2009,4(4):60-61.
  • 3卡尔·波普尔.猜测与反驳:科学知识的增长[M].上海:上海译文出版社,1986.
  • 4R.Agrawal,R.Srikant,Fast algorithms for mining association rules[C]//Proceedings of the 20th International Conference Very Large Data Bases(VLDB),1994:487-499.
  • 5J Han,J Pei,Y Yin.Mining frequent patterns without candidate generation[C]//Proceedings of 2000 ACM SIGMOD Intl.Conf.Manage Data,2000:1-12.
  • 6W Li,J Han,J Pei.CMAR:Accurate and efficient classification based on multiple class association rules[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM01),2001:369-376.
  • 7B Liu,Y Ma,C K Wong.Classification using association rules:Weaknesses and enhancements[C]//Proceedings of the Data Mining for Scientific and Engineering Applications,Berlin,Germany:Springer-Verlag,2001.
  • 8X Yin,J Han.Cpar:Classification based on predictive association rules[C]//Proceedings of the 2003 SIAM International Conference Data Min.(SDM′03),2003.
  • 9Tien Dung Do,Siu Cheung Hui,Bernard Fong.Associative classification with artificial immune system [J],IEEE Transactions on Evolutionary Computation,2009,13(2),2009:217-228.
  • 10Guangfei Yang,Shingo Mabu,Kaoru Shimada,et al.A New Associative Classification Method by Integrating CMAR and An Evolutionary Three-layers Structure[C]//Proceedings of ICCAS-SICE,2009:2920-2925.

二级参考文献10

共引文献11

同被引文献14

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部