期刊文献+

基于定性仿真和模糊知识的离心式压缩机排气量不足原因诊断 被引量:3

Qualitative Simulation and Fuzzy Knowledge Based Fault Diagnosis of Centrifugal Compressor Insufficient Discharge
下载PDF
导出
摘要 针对引起离心式压缩机排气量不足的原因,本文提出一种基于定性仿真和模糊知识的诊断方法.利用压缩机结构原理和故障机理等定性知识建立故障定性模型库,并推理得到压缩机排气量受不同因素影响时的定性规则库.对系统变量的观测值利用定性趋势提取和模糊化进行定性化处理.提出了基于变量定性趋势和模糊定性值约束的滑动窗口加权匹配策略,并根据匹配结果诊断出导致排气量不足的原因.最后通过两个实例仿真验证了所提方法的有效性. In order to diagnose the causes of insufficient discharge of centrifugal compressor, a qualitative simulation and fuzzy knowledge based diagnosis method is proposed in this paper. Qualitative models are built according to the qualitative knowledge derived from structure principle and faults mechanism of the centrifugal compressor, and a qualitative rules library is obtained by inference to describe how the discharge flow is influenced by various factors. The online observations of variables are qualitatively processed by qualitative trends extraction and fuzzy approach. A weighted sliding window match strategy based on variables qualitative trends and fuzzy qualitative value constraint is proposed for qualitative state matching, and the matching results is used to diagnose the reason of insufficient discharge of the compressor. Finally,the effectiveness of the proposed method is verified through simulation of two fault conditions.
出处 《自动化学报》 EI CSCD 北大核心 2015年第11期1867-1876,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61374146 61174130 61374147 61304121) 流程工业综合自动化国家重点实验室基础科研业务费(2013ZCX02-04) 国家科技支撑计划项目(2013BAK02B01-02) 辽宁省科技计划项目(2013231025)资助~~
关键词 定性仿真 模糊知识 故障诊断 离心式压缩机 排气量不足 Qualitative simulation fuzzy knowledge fault diagnosis centrifugal compressor insufficient discharge
  • 相关文献

参考文献14

  • 1Paparella F, Dominguez L, Cortinovis A, Mercangoz M, Pareschi D, Bittanti S. Load sharing optimization of parallel compressors. In: Proceedings of the 2013 European Control Conference. Zurich, Switzerland: IEEE, 2013. 4059-4064.
  • 2Gravdahl 3 T, Egeland O. Compressor Surge and Rotating StMI: Modeling and Control New York: Springer Publish- ing Company, 2011.
  • 3Azadeh A, Saberi M, Kazem A, Ebrahimipour V, Nourmo- hammadzadeh A, Saberi Z. A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper- parameters optimization. Applied Soft Computing, 2014, 13(3): 1478-1485.
  • 4Sakthivel N R, Nair B B, Elangovan M, Sugumaran V, Sar- avanmurugan S. Comparison of dimensionality reduction techniques for the fault diagnosis of mono block centrifu- gal pump using vibration signals. Engineering Science and Technology, an International Journal, 2014, 17(1): 30-38.
  • 5Muralidharan V, Sugumaran V, Indira V. Fault diagnosis of monoblock centrifugal pump using SVM. Engineering Sci- ence and Technology, an International Journal, 2014, 17(3): 152-157.
  • 6马洁,李钢,陈默.基于非线性故障重构的旋转机械故障预测方法[J].自动化学报,2014,40(9):2045-2050. 被引量:7
  • 7Loboda I, Yepifanov S. A mixed data-driven and model based fault classification for gas turbine diagnosis. In: Pro- ceedings of the ASME Turbo Expo 2010: Power for Land, Sea and Air. Glasgow, UK: ASME, 2010. 257-265.
  • 8Zanoli S M, Astolfi G, Barboni L. Applications of fault di- agnosis techniques for a multishaft centrifugal compressor. In: Proceedings of the 18th Mediterranean Conference on Control and Automation. Marrakech, Morocco: IEEE, 2010. 64-69.
  • 9Kuipers B J. Qualitative simulation. Artii6cial Intelligence 1986, 29(3): 289-338.
  • 10Qi x z, Liu B J. Novel approach of fuzzy qualitative simula- tion. In: Proceedings of the 2008 IEEE International Confer- ence on Automation and Logistics. Qingdao, China: IEEE, 2008. 2920-2924.

二级参考文献48

  • 1刘丙杰,胡昌华,蔡光斌.半定量仿真综述[J].系统仿真学报,2006,18(9):2375-2380. 被引量:7
  • 2韩志刚.动态系统预报的一种新方法[J].自动化学报,1983,9(3):161-168.
  • 3Kuipers B. Qualitative Simulation. Artificial Intelligence,1986, 29(3): 289-338
  • 4Kuipers B, Berleant D. Using Incomplete Quantitative Knowledge in Qualitative Reasoning. In: Proceedings AAAI-88. St.Paul,MN,1988. 324-329
  • 5Bealeant D. Qualitative and Quantitative Simulation:Bridging the Gap. Artificial Intelligence, 1997, 95(2):215-255
  • 6Kay H. Numerical Behavior Envelopes for Qualitative Models. In: 6^th International Workshop on Qualitative Reasoning about Physical Systems QR 92. Ediburgh,Scotland, 1992. 252-267
  • 7Kay H. SQSIM: a Simulator for Imprecise ODE Models-Computers and Chemical Engineering, 1998, 23(1): 27-46
  • 8Kay H, Kuiper B. Semi-Quantitative System Identification. Artificial Intelligence, 2000, 119(1): 103-140
  • 9Kay H, Kuipers B. Numerical Behavior Envelopes for Qualitative Models. In proceedings of the Eleventh National Oonference on Artificial Intelligence. Washington D.O, 1993. 606-613
  • 10Christopher J Price.Effective automated sneak circuit analysis[C].2002 Proc Annual Reliability and Maintainability Symposium.Washington:IEEE Press,2002:356-360.

共引文献10

同被引文献16

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部