期刊文献+

基于粗糙集和新能量公式的水平集图像分割 被引量:15

Level Set Image Segmentation Based on Rough Set and New Energy Formula
下载PDF
导出
摘要 为了提高水平集图像分割的质量和减少水平集迭代次数,本文提出了新的能量公式和水平集函数.在粗糙集数据离散化基础上引入了针对图像数据的离散化方法,根据图像离散区域的信息对新能量函数进行直接加权并且对核函数进行间接加权,使用加权的核映射函数将原始离散图像数据映射到高维空间,从而使得该模型可以处理多种类型的图像甚至是一定信噪比的噪声图像.新的能量公式联合由它导出的区域参数能够更好地表达同质区域的灰度信息,从而能够更精确地分割图像.与传统水平集图像分割不同,在迭代过程中新的水平集函数中的水平集元素可以拥有不同的步长,步长越大水平集元素的更新速度越快并且水平集函数能够快速达到收敛状态,实现快速图像分割.人工合成图像和真实图像的分割实验表明本文方法可以获得更好的分割效果. In order to improve the quality of image segmentation and decrease the iterations of level set evolution for image segmentation, a new energy function and a level set function are proposed. Image data discretization is introduced on the basis of rough set theory, in which the local information of the discrete region from the image is used to weight the new energy function directly and the kernel function indirectly. It can handle many types of images, even in a certain noise-signal ratio, by using the weighted kernel function to map discrete image data into higher dimension. The new energy function and the region parameters which are deduced by the new energy function can better express the gray level of the homologous region. Therefore, the proposed method can properly and accurately segment the image. Compared with the traditional methods, the new level set function is constructed by using a new energy function and the information of the discrete regions from the image, each element from the level set may have a different step-size during iteration. The higher the weight value, the faster the element is updated and the less iteration the method has. The proposed method shows the promising performance in the experiments based on synthetic and real images.
作者 张迎春 郭禾
出处 《自动化学报》 EI CSCD 北大核心 2015年第11期1913-1925,共13页 Acta Automatica Sinica
基金 国家自然科学基金(61033012)资助~~
关键词 图像分割 粗糙集 能量函数 水平集 离散区域 Image segmentation rough set energy function level set discrete region
  • 相关文献

参考文献39

  • 1Pham V T, Tran T T, Shyu K K, Lin L Y, Wang Y H, Lo M T. Multiphase B-spline level set and incremental shape priors with applications to segmentation and tracking of left ventricle in cardiac MR images. Machine Vision and Appli- cations, 2014, 25(8): 1967-1987.
  • 2Wang Y L, Wang H M, Bi S S, Guo B. Automatic morpho- logical characterization of nanobubbles with a novel image segmentation method and its application in the study of nanobubble coalescence. Beilstein Journal of Nanotechnol- ogy, 2015, 6:952-963.
  • 3范朝冬,张英杰,欧阳红林,肖乐意.基于改进斜分Otsu法的回转窑火焰图像分割[J].自动化学报,2014,40(11):2480-2489. 被引量:25
  • 4Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. International Journal of Computer Vision, 1988, 1(4): 321-331.
  • 5Osher S, Sethian JA. Fronts propagating with curvature- dependent speed: algorithms based on Hamilton-Jacobi for- mulations. Journal of Computational Physics, 1988, 79(1): 12-49.
  • 6Caselles V, Catt@ F, Coll T, Dibos F. A geometric model for active contours in image processing. Numerische Math- ematik, 1993, 66(1): 1-31.
  • 7Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3): 266-280.
  • 8Wang W M, Zhu L, Qin J, Chui Y P, Li B N, Heng P A. Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion. Optics and Lasers in Engineering, 2014, 54:105-116.
  • 9Luo Y G, Ko J K, Shi L, Guan Y, Li L, Qin J, Heng P A, Chu W C, Wang D. Myocardial iron loading assessment by automatic left ventricle segmentation with morphologi- cal operations and geodesic active contour on T2*images. Scientific Reports, 2015, 5:12438.
  • 10Marquez-Neila P, Baumela L, Alvarez L. A morphological approach to curvature-based evolution of curves and sur- faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 2-17.

二级参考文献114

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:359
  • 2易正明,吕子剑,刘志明.氧化铝回转窑火焰图像处理与特征提取[J].仪器仪表学报,2006,27(8):969-972. 被引量:15
  • 3Pawlak Z. Rough Set Approach to Multi-attribute Decision Analysis[J]. European Journal of Operational Research, 1994, 72(5): 443-459.
  • 4Ruskey F. Combinatorial Generation(Working Version)[D]. Victoria, Canada: University of Victoria, 2001.
  • 5Guan J W, Bell D A. Rough Computational Methods for Information Systems[J]. Artificial Intelligence, 1998, 105(1/2): 77-103.
  • 6[5]Starzyk J, Nelson D E, Sturtz K. Reducts. A mathematical foundation for improved reduct generation in information systems. Journal of Knowledge and Information Systems, 2000, 2(2):131~146
  • 7[6]Bazan J G, Skowron A, Synak P. Dynamic reducts as a tool for extracting laws from decisions tables. In: Ras Z W, Zemankiva M eds. Methodologies for Intelligent Systems. Berlin: Springer-Verlag,1994. 346~355
  • 8[7]Ziarko W. Variable precision rough sets model. Journal of Computer and Systems Sciences, 1993, 46(1):39~59
  • 9[8]Pawlak Z. Grzymala-Busse J, Slowinski R etal. Rough sets.Communications of the ACM, 1995, 38(11): 89~95
  • 10[11]Ying Wu, Thomas S Huang. Hand moeling, analysis, and recognition. IEEE Signal Processing Magazine, 2001(5):51~60

共引文献114

同被引文献105

引证文献15

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部