期刊文献+

基于特征在线选择的目标压缩跟踪算法 被引量:9

Object Compressive Tracking via Online Feature Selection
下载PDF
导出
摘要 基于压缩感知理论的压缩跟踪算法能够有效地实现对目标的跟踪,具有良好的实时性,但该算法对目标特征没有进行在线选择导致跟踪鲁棒性不高.本文提出一种基于特征在线选择的目标压缩跟踪算法.首先,在目标附近采样得到正负样本集合,计算样本的多尺度矩形特征,采用压缩感知中的随机投影矩阵对高维特征投影得到低维压缩域特征,对压缩域特征进行在线选择提取最优特征,剔除被污染的样本特征,使用简单高效的朴素贝叶斯分类模型进行样本判断,实现对目标的跟踪,同时对跟踪中目标在摄像头中的尺度变化进行建模,给出目标尺度变化的定量描述,实现了适应目标尺度变化的多尺度跟踪.实验结果表明本文算法具有更好的鲁棒性与更高的跟踪精度,对目标跟踪中的遮挡、光线突变、尺度变化和非刚性形变等因素具有较好的抗干扰能力,同时算法复杂度低,可以满足实时性要求. The compressive tracking algorithm based on compressive sensing theory can efficiently achieve real-time object tracking, but the algorithm does not select proper object features online, resulting in low tracking robustness. In order to solve this problem, an object compressive tracking algorithm with online feature selection is presented. Firstly, sets of positive and negative samples are obtained by sampling around the object, and the multi-scale rectangle features of the samples are calculated. Secondly, the compressive sensing random projection matrix is used to reduce the dimensionality of high dimensional features to obtain low-dimensional compressive domain features, and the compressive domain features are updated and selected online to extract the optimal feature to remove contaminated samples and update the classifier.Finally, a simple and efficient Bayesian classification model is utilized to achieve the object tracking. Moreover, changes of object scale in the camera are modeled and a quantitative description of changes in scale is given for multi-scale tracking which can adapt to change of the object scale. Experimental results show that the proposed algorithm can achieve a higher tracking accuracy and better robustness than several state-of-the-art algorithms and can well respond to the interferences such as block in the object tracking, light mutation, scale changes, non-rigid deformation and so on. Meanwhile, it has a low computational complexity and fully satisfies the real-time requirement.
出处 《自动化学报》 EI CSCD 北大核心 2015年第11期1961-1970,共10页 Acta Automatica Sinica
基金 国家自然科学基金(41306089) 江苏省自然科学基金(BK20130240) 江苏省产学前瞻性研究项目(BY2014041)资助~~
关键词 特征在线选择 压缩感知 尺度变化 目标跟踪 Online feature selection compressive sensing scale change object tracking
  • 相关文献

参考文献25

二级参考文献155

  • 1李小平,边肇祺,汪云九.二维Gabor滤波器的快速实现[J].自动化学报,1989,15(2):136-141. 被引量:3
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3邹海荣,龚振邦,罗均.无人飞行器地面移动目标跟踪系统研究现状与展望[J].宇航学报,2006,27(B12):233-236. 被引量:5
  • 4文志强,蔡自兴.Mean Shift算法的收敛性分析[J].软件学报,2007,18(2):205-212. 被引量:48
  • 5Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662.
  • 6Thirde D, Borg M, Aguilera J, Wildenauer H, Ferryman J, Kampel M. Robust real-time tracking for visual surveillance. Eurasip Journal on Advances in Signal Processing, 2007, 2007(1): 1-13.
  • 7Veeraraghavan H, Schrater P, Papanikolopoulos N. Robust target detection and tracking through integration of motion, color, and geometry. Computer Vision and Image Understanding, 2006, 103(2): 121-138.
  • 8Zheng J, Li B, Zhou B, Li W. Fast motion detection based on accumulative optical flow and double background model. In: Proceedings of International Conference on Computation. Xi'an, China: Springer, 2005. 291-296.
  • 9Li L Y, Huang W M, Gu I Y H, Tian Q. Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing, 2004, 13(11): 1459-1472.
  • 10Ramanan D, Forsyth D A, Zisserman A. Tracking people by learning their appearance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 65-81.

共引文献107

同被引文献39

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部