期刊文献+

利用CRISPR/Cas系统快速高效构建血友病乙小鼠模型 被引量:9

A quick and efficient method to generate hemophilia B mouse models by the CRISPR/Cas system
下载PDF
导出
摘要 血友病乙是由凝血因子Ⅸ(FactorⅨ,FⅨ)缺乏或功能缺陷导致的出血性疾病,为伴X染色体隐性遗传病。小鼠模型对于血友病乙的研究具有十分重要的意义,而基因组编辑技术又为小鼠模型的构建提供了一种快捷而且高效的途径。本文利用CRISPR/Cas系统,在小鼠FⅨ基因第8外显子上选择靶位点,将Cas9 m RNA和带有靶位点的sg RNA显微注射到C57BL/6品系小鼠的受精卵中,获得基因修饰的小鼠。利用高分辨率熔解曲线分析(High resolution melting,HRM)技术进行精确基因分型,并通过测序验证,在60只小鼠中,总共有51只小鼠的靶位点发生了突变,突变率高达85%,其中雄鼠的突变率为79.5%,雌鼠的突变率为95.2%;未检测到非目标位置的基因编辑脱靶。凝血活性实验显示,突变小鼠的FⅨ活性值(FactorⅨcoagulant activity,FⅨ:C)是非突变小鼠的6.82%,大大低于非突变小鼠,表明突变小鼠的凝血活性缺失。本研究表明,利用CRISPR/Cas系统成功构建了人类血友病乙遗传病小鼠模型。 Hemophilia B, or the Christmas disease, is a common human disease caused by coagulation factor Ⅸ(FⅨ) deficiency. It is an X-linked recessive hereditary disease. Here we obtained FⅨ-knockout mouse strains with phenotype of hemophilia B with the CRISPR/Cas system efficiently. We chose the 8th exon as the target locus, and co-injected codon-optimized Cas9 m RNA with sg RNA of FⅨ into C57BL/6 mice zygotes. We obtained 60 mice in total and genotyped them by high resolution melting(HRM) and sequencing. The results showed the mutation rate was 85.0% in total, and 79.5% and 95.2% in males and females, respectively. No off-targets were detected in the similar locus by HRM. We future measured the FⅨ activity of each mice. The FⅨ: C of mutant mice were significantly below the normal level and reduced to 6.82% of wild-type mice. The activity assay demonstrated that all the mutant mice were lack of FⅨ. In summary, we have generated hemophilia B model mice with extreme efficiency, using the RNA-guided Cas9 nuclease gene editing system.
出处 《遗传》 CAS CSCD 北大核心 2015年第11期1143-1148,共6页 Hereditas(Beijing)
基金 国家自然科学基金项目(编号:31571371)资助
关键词 血友病乙 CRISPR/Cas系统 基因组编辑 小鼠模型 hemophilia B CRISPR/Cas system genome editing mouse model
  • 相关文献

参考文献12

  • 1Giannelli F, Green PM, Sommer SS, Poon MC, Ludwig M, Schwaab R, Reitsma PH, Goossens M, Yoshioka A, Figueiredo MS, Brownlee GG. Haemophilia B: Database of point mutations and short additions and deletions- eighth edition. Nucleic Acids Res , 1998, 26(1): 265-268.
  • 2Kurachi K, Kurachi S, Furukawa M, Yao SN. Biology of factor IX. Blood Coagul Fibrinolysis , 1993, 4(6): 953-973.
  • 3Wang LL, Zopp M, Hackeng TM, Griffin JH, Lee KF, Verma IM. A factor IX-deficient mouse model for hemophilia B gene?therapy. Proc Natl Acad Sci USA , 1997, 94(21): 11563-11566.
  • 4Lin HF, Maeda N, Smithies O, Straight DL, Stafford DW. A coagulation factor IX-deficient mouse model for human hemophilia B. Blood , 1997, 90(10): 3962-3966.
  • 5Shen B, Zhang J, Wu HY, Wang JY, Ma K, Li Z, Zhang XG, Zhang PM, Huang XX. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res , 2013, 23(5): 720-723.
  • 6Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 2012, 337(6096): 816-821.
  • 7Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823.
  • 8Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell , 2013, 153(4): 910-918.
  • 9Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet , 2012, 8(8): e1002861.
  • 10曹春鸽,孙海燕,周芳芳,王诗铭,陈红岩,卢大儒.应用HRM技术对CYP2C19*2和CYP2C19*3进行双重SNP分型[J].遗传,2013,35(7):923-930. 被引量:6

二级参考文献27

  • 1Connolly SJ, Yusuf S, Camm J, Chrolavicius S, Commer-ford P, Flather M, Hart RG, Hohnloser SH, Joyner C, Pfeffer M, Gaudin C, Blumenthal M, Marchese C, Pogue J, Hart R, Hohnloser S, Anand I, Arthur H, Avezum A, Budaj A, Zoble RG. Effect of clopidogrel added to aspirin in pa-tients with atrial fibrillation. N Engl J Med, 2009, 360(20): 2066-2078.
  • 2Yusuf S. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med, 2001, 345(23): 1716-1716.
  • 3Savi P, Combalbert J, Gaich C, Rouchon MC, Maffrand JP, Berger Y, Herbert JM. The antiaggregating activity of clopidogrel is due to a metabolic-activation by the hepatic cytochrome P450-1A. Thromb Haemost, 1994, 72(2): 313-317.
  • 4Ferreiro JL, Angiolillo DJ. Clopidogrel response variability: Current status and future directions. Thromb Haemost, 2009, 102(1): 7-14.
  • 5De Morais SMF, Goldstein JA, Xie HG, Huang SL, Lu YQ, Xia H, Xiao ZS, Ile N, Zhou HH. Genetic-analysis of the s-mephenytoin polymorphism in a chinese population. Clin Pharmacol Ther, 1995, 58(4): 404-411.
  • 6Demorais SMF, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA. The major genetic-defect responsible for the polymorphism of s-mephenytoin metabolism in humans. J Biol Chem, 1994, 269(22): 15419-15422.
  • 7Xiao ZS, Goldstein JA, Xie HG, Blaisdell J, Wang W, Ji-ang CH, Yan FX, He N, Huang SL, Xu ZH, Zhou HH. Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele. J Pharmacol Exp Ther, 1997, 281(1): 604-609.
  • 8Wittwer CT. High-resolution DNA melting analysis: advancements and limitations. Hum Mutat, 2009, 30(6): 857-859.
  • 9Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem, 2004, 50(7): 1156-1164.
  • 10Gonen D, Veenstra-VanderWeele J, Yang Z, Leventhal BL, Cook EH. High throughput fluorescent CE-SSCP SNP genotyping. Mol Psychiatry, 1999, 4(4): 339-343.

共引文献5

同被引文献62

  • 1侯玉香,肖小璞.血友病基因治疗概述[J].中国输血杂志,2007,20(1):71-74. 被引量:2
  • 2Peijin Li,Yonghong Wang,Qian Qian,Zhiming Fu,Mei Wang,Dali Zeng,Baohua Li,Xiujie Wang,Jiayang Li.LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J].Cell Research,2007,17(5):402-410. 被引量:89
  • 3Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31(7): 397-405.
  • 4Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T. MMEJ-assisted gene knock-in using TALENs and CRI- SPR-Cas9 with the PITCh systems. Nat Protoc, 2016, 11(1): 118-133.
  • 5Zu Y, Tong X J, Wang ZX, Liu D, Pan RC, Li Z, Hu YY, Luo Z, Huang P, Wu Q, Zhu ZY, Zhang B, Lin S. TALEN-mediated precise genome modification by homo- logous recombination in zebrafish. Nat Methods, 2013, 10(4): 329-331.
  • 6Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A. Precise correction of the Dystrophin gene in Duchenne Muscular Dystrophy pa- tient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep, 2015, 4(1 ): 143-154.
  • 7Zhou YX, Zhu SY, Cai CZ, Yuan PF, Li CM, Huang YY, Wei WS. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature, 2014, 509(7501): 487-491.
  • 8Kim HS, Hromas R, Lee SH. Emerging features of DNA double-strand break repair in humans. In: Chen C, ed. New research directions in DNA repair. INTECH, 2013: 187-211.
  • 9Mao ZY, Bozzella M, Seluanov A, Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle, 2008, 7(18): 2902-2906.
  • 10Bettcher R, Hollmann M, Merk K, Nitschko V, Obermaier C, Philippou-Massier J, Wieland I, Gaul U, F6rstemann K. Efficient chromosomal gene modification with CRISPR/ Cas9 and PCR-based homologous recombination donors in cultured Drosophila cells. Nucleic Acids Res, 2014, 42(11): e89.

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部